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Preface

. .
The purpose of this thesis was to investigate a method ‘_

of extending the range of identification of nuclear sources. ‘

.

® The method was centered on Bayes' theorem, and the results E
were compared with the method of photopeak identification,

which is perhaps the most common method used today. The

® Finite Element Method was used to transport the source i
spectra out to various ranges and Bayes' theorem, in -“

conjunction with various statistical distfibutions, was used

& ) to analyze the results. é
I would like to thank Dr. Larry McKee for sponsoring ‘

this thesis topic, and for his patience while I stumbled “

@ through some of the rough spots. I would also like to thank :"::
Dr. Donn Shankland for the countless hours spent helping me ::_

with statistical distributions, the Finite Element Method, :‘I

) and the Harris 800 operating system. Without him, none of %—
this work would have been possible. 1In addition, I must ?:E

express my gratitude to Mr. Seth Tuuri, for asking the ;

& fundamental questions that keep ﬁasic research alive. -4::‘
Lastly and most importantly, I thank my wife and fellow @

classmate LeAnn, for sharing the frustrations and E:::}

= unreasonable hours along with me. | :l’}j
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Abstract

"This research effort studies the application of Bayes'
decision theorem to extending the range of remote
identification of nuclear materials. The Finite Element
Method was used to develop a radiation transport code which
was used to reconstruct a group of three sample sources at
distances of 50, 100, 200, 300, 400 and 500 meters. Both the
Poisson and multinomial distributions were then used to
simulate measured sources in a low count environment at these
six ranges. Bayes' theorem was applied to the resulting
measured sources to test for positive identification.

The results show that a low resolution detector can
increase the range of remote detection an average of 100
meters when compared with the method of photopeak
identification. Bayes' theorem is unable, however, to
identify sources not contained in the library of known

sources. Coam et s b e
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IDENTIFICATION OF NUCLEAR MATERIALS FROM REMOTE DETECTION OF
CHARACTERISTIC GAMMA RAYS

I. Introduction

Background

This thesis addresses the problem of identifying
specific radioactive sources by examining their
characteristic gamma ray spectra. The primary effort will be
to develop a technique of extending the range of reliable
detection of nuclear materials.

Normally, the analysis of characteristic gamma ray
spectra involves matching the photopeaks of the given
spectrum with those present in the spectra of known isotopes
for the purpose of identifying the constituents of the
source. Such identification of nuclear material is of
interest in order to learn the nature of given sources, that
is, to identify the 'ingredients' of a nuclear source.
However, current methods which use photopeak analysis for
identification purposes are of limited value once
downscattering of the peak energies has occurred.

In order to be of practical benefit, the identification
of nuclear materials must consider the non-ideal case of
remote detection, In other words, the given gamma ray
source spectrum must be examined at a distance and therefore,
will have been transported through the atmosphere for a

predetermined distance. Transporting such a spectrum through

ER I
PP SN T I Y

L IR

OSSN SR

)

e




air introduces a number of complications due to the
interaction of photons with molecules and atoms in the
earth's atmosphere.

By interacting with the particles of the air, photon
energy is degraded by three main processes: the
photoelectric effect, compton scattering, and pair
production. The importance of each process depends on the
initial energy of the photon., It is important here to
realize that the compton scattering process is responsible
for degrading the ideal (untransported) gamma spectrum by
'smearing' the energy of the photons over a wide range of
values, Therefore, Compton scattering is the primary
mechanism for the degradation of gamma photopeaks in this

problem.

The Problem

This thesis will study the ability to discriminate
between different gamma ray source spectra by using Bayes'
theorem. Bayes' theorem will be employed as a decision aid
to assess the probability of having a certain source, given
the transported spectrum., By plotting the probabilities as a
function of distance from the source, we can determine the
reliability of Bayes' theorem as a correlation technique for
extending spectral identification beyond the current
limitations of photopeak analysis,

Simply stated, this thesis will test the assumption that

Bayes' theorem will work at distances from the source where
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less than ideal circumstances include measuring a given

o
3

source once at extreme range with a small number of counts
collected. -]
;ﬂ
Methodology: the Finite Elements Method i;
The method used to approximate the solution to the E?
diffusion equation is the Finite Elements Method. It was EE
chosen because of its accuracy in comparison to other methods ;;
such as the Method of Integration and it is at the same time ti
-4

less complicated to program than more advanced methods (8).

In general, the diffusion equation is expressed as

- 9+(DVF) + £%F = 8 (1)

. . . . A a,
where the variable D is the diffusion coefficient, £ " is the
macroscopic absorption cross section, S is the source
function, and F is the fluence. Also, it is important to

note that

b=7% (2)

where, Ztﬁs the macrosopic transport cross section. The
Finite Elements Method assigns a penalty function given by ;_]
7..-'::31
P(F) = %JdV(DZ£~_£ + £%F2 - 2FS) (3) .fq

16




Overview of the Approach

The radiation transport problem will be solved by
implementing a numerical solution to the diffusion equation.
The diffusion equation will then be used to solve for the g%
scattered fluence contribution of each cnergy group in each 3
source., This scattered, or diffuse solution (including EE
downscattering and inscattering contributions) will be added i:
to the uncollided fluence (virgin fluence) solution of each ?q
energy group, resulting in a value of total fluence for each
energy group.

By solving the diffusion equation for each library
source at a number of different ranges, the reference sources
are arrived at, which will be discussed later in this

chapter., As the distance increases from the source, the

uncollided fluence drops off exponentially (see appendix A),
and at some point, there is an extremely small contribution
to the solution due to the uncollided fluence, but still a
sizable contribution from the diffuse (collided) fluence. 1In
other words, the further away from the source the measurement
is taken, the larger is the percentage of diffuse fluence.

At some very large distance then, all the photons detected
will have been scattered at least once, and therefore no more
uncollided fluence is present. The concept of using Bayes'
theorem as an analysis tool is based on using the diffuse
solution in addition to the uncollided solution to identify

sources measured under less than ideal circumstances. These

15
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ITII. Transport of Source Spectra

In the last chapter, a number of source spectra were
introduced, based on high resolution data obtained at the
surface of each source. Recall that the spectral
distribution for each source was given in counts per gamma
photon per unit energy, or alternately, in counts per photon
per channel (each energy group representing a channel). In
this chapter, the methodology will be developed to transport
each of these library spectra to any given distance away from
the original source. The results of the radiation transport
of each of the three library sources will be presented at the

end of this chapter.

Assumptions

In order to simplify the radiation transport problem
into a manageable one, the following assumptions are made:

(1) The source photons are transported through

homogeneous air, o

(2) The source and the detector are located

at sea level,

(3) An ideal detector is assumed, so that all photons

reaching the detector are counted.

(4) The fluence of photons is radially symmetric

(no angular dependence).

14
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Figure 1. The Library Sources
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TABLE II-3 e
([ i
Relative Intensity Distribution of Library Sourcecs l‘r.—_i
(counts / KeV / photon) .J
. -
Group Number Source A Source B Source C 5..-1
B!
1 0.0 0.0 0.0 i
° s
2 0.0 0.0 0.0 .
3 0.0 0.0 0.0 3
4 0.0 0.0 0.0 S
@ P
5 0.0 0.0 0.0 o
6 4.39E-7 4.74E-7 2.93E~7 A
7 1.58E-6 1.81E-6 1.67E-6 b
» 8 4.99E-6 1.61E-6 4.21E-6
9 6.39E-6 9.36E-7 0.0
10 2.12E-5 9.81E-7 6.88E-6
» 11 5.00E-5 3.53E-6 0.0
12 1.23E-4 6.76E-5 1.04E-5
13 2.58E-3 3.95E-4 6.38E-5
» 14 3.06E-3 1.91E-3 1.28E-4 :
0%
15 4.46E-4 1.87E-3 1.83E-3 R
16 5.09E~4 3.24E-3 4.43E-3 R
.:L'\.'v
» 17 5.16E-4 2.69E-3 4.82E-3 »
18 3.27E-3 2.24E-3 3.34E-3 -
»
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4 TABLE II-2
| @ Relative Intensity Distribution of Library Sources
{ (counts / photon)
)
@ Group Number Source A Source B Source C
]
’ 1 0.0 0.0 0.0
o 2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0
@ 5 0.0 0.0 0.0
6 2.20E-4 2.37E-4 1.47E-4
7 7.92E-4 9.06E-4 8.35E-4
o 8 1.70E-3 5.46E-4 1.43E-3
9 2.11E-3 3.09E-4 0.0
10 6.99E-3 3.24E-4 2.27E-3
® 11 1.00E-2 7.07E-4 0.0
12 2.47E-2 1.35E-2 2.08E-3
13 5.16E-1 7.90E-2 1.28E-2
I3 14 3.06E-1 1.91E-1 1.28E-2
15 4,46E-2 1.87E-~1 1.83E-1
16 5.09E-2 3.24E-1 4,43E-1
- 17 2.58E-2 1.34E-1 2.41E-1
AE 18 9.80E-2 6.73E-2 1.00E-1
|
|
;‘O
11
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TABLE II-1

Energy Dependence of Detector Channels

Group Number Energy (KeV)
1 8000 - 10000
2 6500 - 8000
3 5000 - 6500
4 4000 - 5000
5 3000 - 4000
6 2500 - 3000
7 2000 - 2500
8 1660 - 2000
9 1330 - 1660
10 1000 ~ 1330
11 800 - 1000
o 12 600 - 800
13 400 - 600
14 300 - 400
. 15 200 - 300
16 100 - 200
17 50 - 100
. 18 20 - 50
b
b
L
10
o
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"detector" is provided in table II-1. The 18 gamma-group
cross section data file is attached in appendix B.

The second step involved totalling the counts contained
in each of the newly defined eighteen channels for each
source, In addition, the background data was subdivided into
the eighteen channel structure.

Finally, the background was subtracted from each of the
sources, and the total number of counts was determined for
each. The relative intensity of each source was determined
by dividing the number of counts in each channel by the total
number of counts for that particular source. These relative
intensities are provided in Table II-2. The final library
spectra are pictured in figure 1, and a listing of the
relative intensities in counts per KeV per photon are given
in table II-3.

As can be seen in figure 1, all three sources have
identifying features that makes each one unique. Sources B
and C show the most similarities with respect to each other,
and can be used as a benchmark during the analysis section,
as mentioned earlier. As the transport distance increases,
downscattering of gamma photons should make sources B and C
'converge' to a common spectrum, whereas source A should
maintain its unique identity for larger ranges,

In the next chapter, the results of the radiation
transport code development will be used to generate the
measured and reference sources, based on the library sources

presented in this chapter.
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photopeak identification requires that a photopeak be at

least three standard deviations above the background level

; for positive identification (three sigma being 99.7 percent

3! probability of certainty). Please reference appendix A for

more details on this subject.

Some notable photopeaks observed in the high resolution

.{ specta include the 767 KeV and 1001 KeV lines from 23®U and

o the 375 KeV and 414 KeV lines of #**Pu., Numerous other
photopeaks from other radioisotopes contribute to the overall
relative intensities in each channel.

o The second criterion listed above will test how Bayes
Decision Theory can discriminate between two similar nuclear
sources, in contrast to two sources which have dissimilar

| spectral features. In addition, a fourth source will be
introduced, which will be different from all of the library
spectra, in order to examine the effects of an "unknown"

® source on the analysis.

. Creation of the Low Resolution Sources.

\ Having selected the three high resolution spectra (in

‘:C line w' th the above criteria), the task remains to translate

these into the three low resolution library spectra for use

in this problem. This was accomplished in three basic steps.

3¢ First, the high resolution spectral data was divided
into an eighteen energy group structure, which was used in
this problem. The eighteen group structure was chosen

4 ¢ because the gamma photon cross section data was readily

available (l4). The energy structure of this low resolution

¢
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spectra were obtained using a high resolution Germanium
detector, and exhibited detailed line structure and continuum

levels.

RIOREE, ) RS Astir J

All of the above mentioned measurements were made within

one meter of each source, and each source was enclosed within

v ,t'.. ['..:I“ .'...’.

a container. Therefore, the spectra represent the

.
2
o

l\.\
characteristic source spectra taken at the surface of the R
X
source, and some downscattering of the photons has already J?
occurred. The library sources derived from this data iy
»_"}J
red

therefore represent each spectrum taken at the surface of

each nuclear source.

Generation of Library Spectra. .

Selection of the High Resolution Sources. e

The three library sources were composed using the data

discussed above, These library spectra were taken directly

from three of the measured (high resolution) gamma spectra,

'."‘-u

SATE )5

based on the following criteria:

(1) Each source should contain discernible photopeaks

\
(at least three standard deviations above the ;S
background). h
(2) Two of the sources should have some similar iﬁ
spectral features and relative intensities, and Eﬁ
"o the third should not strongly resemble the others. %§
? Using the first criterion will allow for a contrast with E%
E the method of photopeak identification, which classifies Fi
4 )

»,

nuclear materials by identifying specific (characteristic)

lines in the spectrum. As mentioned above, the method of
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II. Source Selection

v
)

R

.
The first order of business in this problem is to e

\'

identify several source spectra that will represent the gamma =
ray signature of different nuclear materials. These source .,

*y

,l’ a2

spectra, or "library spectra,”" will then be used to test the

s
Py

P A
.

feasibility of Bayes Theorem as a remote identification tool.

5
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The Library Spectra

U )
LS

Method of Selection.

L.
P ]

There are two possible approaches to the source

CTBE

v
.
B
.

selection process. In the first approach, the library

P
spectra are chosen to represent the gamma spectra of specific Eﬂ
radioisotopes, that is, each source is composed of a simple ;‘
combination of radioisotopes, with the intensity levels 53
determined arbitrarily. Using a second approach, the library 55

spectra represent actual nuclear materials, By using the

second method, the intensity levels of the library spectra

i

)
Pd

X

WSS

are more realistic, having been taken from actual
measurements of different nuclear materials.

The second method of source selection was used in this

Ve
L

>

research project, in order to more realistically assess the

R s S 2
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[ B

(e ]
4

utility of Bayes Theorem as a method of remote source

181

identification.
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Spectral Data.
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A number of measured gamma spectra were studied in order
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to derive three library spectra. All of the high resolution
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laboratory or in the field. 1In order to make this a
manageable problem, some limitations and assumptions had to
be incorporated,

First of all, the source spectra are transported through
air only, and not through such materials as might be found in
a real transport problem. Secondly, the detector counting
times are determined so as to give a predetermined spectral
intensity, whereas in reality, this flexibility may not exist,
Thirdly, the theoretical detector has a collecting area of one
square centimeter, and is equally sensitive to all energy
groups. Finally, it must always be remembered that the Finite
Elements Method itself is only an approximation of the
transport solution, pnot an exact (analytic) solution.

The assumptions made in this problem are outlined in

detail in chapter 3, which discusses the transport phenomena.

LAYOUT OF CHAPTERS

The chapters are organized in the order of the subjects
presented in this introduction. Chapter 2 begins with the
selection of the sources, chapter 3 covers the transport of
the sources, and chapter 4 completes the solution with a
detailed presentation of Bayes' theorem and the counting
statistics., Chapter 5 discusses the results and compares them
with the method of photopeak identification, and the last
chapter outlines the conclusions and recommendations,

including a discussion of the applications of this method to

'real world' scenarios.




of the ideal detector. Initially, the Poisson distribution

will be used, under the assumption that all channels of the
detector collect counts independently of each other
(statistically independent), In order to test the
sensitivity of the analysis, a multinomial distribution will
be used instead of the Poisson distribution, this time under
the assumntion that the detector channels are statistically
interdependent.

Finally, the fourth part of this thesis problem entails
writing a subroutine which uses Bayes' theorem to examine the
transported spectra at any given distance from the source and
output the probability that a particular spectrum is that of
"Source A" given the transported spectrum. This is repeated
for all sources (Source B, etc.) for the measured spectrum at
a number of ranges and the results plotted. The Bayesian
source liklihoods can be determined at ranges beyond the
acceptable limits (to be defined in chapter V) of photopeak
identification, and the utility of the Bayes' theorem method
will be assessed. The computer code(s) for the third and
fourth parts of this thesis will be combined as one and
written in the BASIC computer language and run on an Apple II

series computer,

Limitations

This problem is designed to verify a theoretical
technique using numerical methods. As such, the thesis does

not pretend to duplicate all the constraints found in a

R R A,
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photopeak analysis fails. In so doing, it will be shown that
information about the source can be gained from the

downscattered photons.

Approach

The problem will be broken down into four main parts.
First, a set of realistic 'generic' source spectra will be
developed based on the gamma ray spectra of isotopes likely
to be found in a nuclear source. A number of different
sources will be developed in order to test the ability of
Bayes' probability theory to discriminate between different
nuclear sources,

The second part of the problem involves developing a
computer program to transport each individual source spectrum
for any distance through the atmosphere. The first thesis
done on this topic attempted to transport gamma ray spectra
using Monte Carlo techniques (7). This method proved to be
far too cumbersome for the given problem and will not be
investigated further. Instead, this thesis will use
multigroup diffusion theory, which should be a more
applicable transport technique (8). The multi-group
diffusion code developed here uses the Finite Elements Method
with a one-dimensional spherical coordinate geometry and will
be written in Fortran 77 on the AFIT/AD Harris 800
minicomputer.

The third major effort will be to incorporate a

subroutine to analyze the counting statistics at the location

PR N B Jave i e




where F is now the function that minimizes the penalty
function P (3).

Next, F is replaced by F + § F, where 6F is
arbitrarily small, and equation (3) becomes

P(F + &F) = %JdV{DZ(F + 8F)«VY(F + 6F)

(4)
+ £3(F + 6F)2 -~ 2(F + 6F)S}

By multiplying through and collecting terms on the right hand
side, equation (4) becomes

P(F + 6F) = P(F) + jdV(Dggg-g§_+ £F§F

- §FS} + O(82F) ()

The terms of order §2F in equation (5) can be neglected, as

they are vanishingly small, so that the equation is of the
form

P(F + §F)
or §P

P(F) + P(6F)

(6)
P(F + §F) - P(F)

(7

In order to obtain the smallest penalty, the right hand side
of equation (7) must go to zero.

From equations (5) and (7)
then

5P = JdV{ngg-zg + I®F6F - GFS) (8)

By using integration by parts and Stoke's theorem, the
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incremental penalty function becomes
§P = JdVdF{—z-(Dﬂ‘_) + L% - s} (9)

This results in a final form of 6P, given by

$P = Jd_aGFDZE + JdVGF{-Z'(D_V_F_) + £3F - s} (10)

s e— e e

Therefore, to minimize this quantity (8P), both of the

integrands (one surface and one volume) must go to zero.

v Emmmw. v, . ¥ v

(11)
(12)

VF
-Ve(DVF) + Z%F - S

n o
o O

v MmNy -

It is evident from the results presented in equations (1l1)

r F 2

and (12) that the penalty function given by equation (3)

Bk o |

accurately describes the diffusion problem (comparing

equations (1) and (12)). Now the problem has been reduced to

\

N

one of minimizing the penalty function in equation (3) by >

solving for the function F. %

b Digitizing the Problem, :

t The methodology discussed above must now be worked into .

[‘ a form conducive to computer implementation. The finite i

1 -

f element nature of the problem enters when the function F is \

{ "

t represented by a homogeneous cubic polynomial function. In "

b 2

: one dimension, this function is given by equation (13) (top N

¢ i

\ of next page):
:
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The values of z are the fluxes and currents (flux
derivatives) at the mesh boundaries, and hence represent the
ultimate form of the solution of the finite element problem.
The functions fiin equation (13) are expressed in terms of

the natural coordinates 1l and 12.
+ 1, =1 (14)

In addition, 1, has a value of 1 at the left mesh node and O

1
at the right node, whereas 12 is O on the left and one on the
right. The mesh configuration is illustrated in figure 2
s s -~ 1

below. 1 [Fyedq Fols | 2

| BN - i

i - !

| A |

P -
. < =
D B

Figure 2. One-Dimensional Version of F(11,12)
The function F in equation (3) has now been approximated in

terms of the mesh quantities Fl, jl, F2, jz; the fluxes and
currents at the nodal points. In its expanded form equation

(13) becomes

)
)

F = Flfl(ll’lz) + Jlf2(11'12) + F2f3(11,12 (15)

+ 32f4(11’l
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The cubic polynomial functions are given by the following

equations

£, = 1] + 3111,
£, = -piil,

£,= 13 + 31,13
£4= B1113

(16)
(17)
(18)
(19)

Equation (3) can now be expressed in terms of the function F

in equation (15).

Both the first and second terms in

equation (3) can be replaced with the aid of equations (16) -

(19).

For instance,

a . : 2
%Idlz {Flfl + Jle + F2f3 + J2f4}

the second term in equation (3) becomes

(20)

Equation (20) can be expanded and the integral evaluated by

using the integral formula given in the equation below (15).

Pi1
jd1(1112)

hplq!
T (p+q+1)!

(21)

The first term in equation (3) is done in a similar fashion,

with the additional aid of the relationships

dll/dx

d12/dx

y ISR SN NP A LR SRR IAL
LR A S I YRS

= -1/h
= 1/h
20
S L e

(22)
(23)
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The third term in equation (3) is approximated using
Simpson's intergral approximation, since the value of the
source function S can be calculated throughout the region of
interest (5).

Once the three terms in equation (3) have been
approximated, it is a simple matter to get it into a form
which allows for computer coding. All three integral terms
have been put in a form allowing for evaluation over the

interval of interest, and equation (3) becomes
P = 32eMez - Z.S - Z(E‘E - d) (24)

The first term is simply a combination of the first two

integral terms in equation (3), having been expanded and

— v r
ateln

combined into a single matrix M. This global matrix is a 8

-~

L)

combination of all the local matrices, there being one local
matrix for each mesh space used. Recall that the local

matrices were obtained by evaluating terms one and two of

v

0 ’.'.‘ P

equation (3) using equations (16) - (20).

L A}
[

L

The S matrix consists of the values of the third

L
e
r'y

integral term in equation (3), which was evaluated using

1)
2.

Simpson's Rule. The last term in equation (24) was added to

+

i account for the boundary conditions of the problem.
¥ Finally, the z matrix is an array containing the values
k of the flux and current at each node. Hence, the problem
@“ remains to solve for the values of the z matrix by minimizing
¢
3
| 21

«

. "y Pa T e . P -, P O P L ;_ -.' - - -_~,- L TR SR - ,’- . »
A X L0 "'.' " { '- ‘-'4" X ._.“_ -‘. - ‘, -;' P "' c ."'.."_- { S -“:.-‘_'.‘ Tl . "_"'. o Y : S '
. .) '} Lo oot :(' -_4-( AR L¢AAA}(-'AI'A1L‘{~ YW I Sl ) 5_‘1.L,.|' AN L_; Y W P S S ] .?J.dm PP N &




T - — R R e T L T TETIC TR T g iy g prergoges Tererne Ty mgroympryryrToww

@
AP

“s

PRI,

equation (24). By taking the partial derivative of P in

equation (24) with respect to z and setting it equal to zero,

i
2

as well as the partial derivative of M with respect to A, a

series of linear equations is obtained. The equations,

expressed in matrix form are rearranged and ultimately used

to solve for the z matrix

T T

. -
AL 4B
Apc sty - Ageady o

A

(25)
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The transport code is written to solve just this set of

equations.

The One-Dimensional, Single Group Problem.

As a first step to running the transport code using the

Finite Element Method, a simple case was programmed. This

3

sl §

case involves a one dimensional "slab geometry" problem with

AI’

S

a known source function S, and a known fluence solution (12).

-2y
)

Vi

The diffusion equation for this geometry becomes:

=3
£

LI S S o
i v
L
&

“w
p(dElady2 4 22r(x) = s5(x) (26) :
-
1 and the final equation for the penalty function becomes
)
P -
* a
: - dF, . ap2 (27)
| P =13 dx(D(dx) + L°F% - 2FS)
L b
® This is precisely the problem which was derived in the last

section, using the one-dimensional cubic polynomials

22
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(equation 15). Since the fluence as a function of distance
is already known, it becomes an easy matter to check the
results of the program.

The program was tested on the case where the fluence and

source functions are given by

]
b

F(x) “ (28)

S(x) = -12x2% ¢+ x* (29)

The finite element solution (using the source function) is

graphed along with the actual solution in figure 3.

2
2. F(X) = X*
@
2]
(ot
el
5]
S LEGEND
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Figure 3. Finite Elements Solution Verification
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As can be seen in figure 3, the match provided by the Finite

Elements Method is very good indeed.

The Three-Dimensional, Multi-Group Problem, E

Following the code verification in one dimension, it is ;‘
necessary to expand the code into the three-dimensional »
(spherical geometry) multigroup problem. Since assumption :
number (5) assumes radial symmetry, the only dependence is Rt
on the variable r. As is explained in appendix C, the
three-dimensional problem can be placed into a form which T
allows the use of the one-dimensional approximating

polynomials, given by equations (15) - (19). Hence the

problem needs only to be modified to accept the multiple é
energy groups. Si

The transition from single to multigroup is very :5.
straight—fo;ward. The program is modified to calculate the :f
solutions for flux and current on the nodes (the z matrix) 3‘

one time for each group. This involves setting up the global
matrix once for each group as well as modifying the source

term used in the Simpson's approximation. Beginning with the

highest energy group (group 1), the diffuse fluence solution

is due only to inscattering of the uncollided photons. As
the program solves each consecutively lower energy group, the
\ source term is modified to account for the downscattered

fluence from higher energy groups as well as the inscattered

L Zaa mahe o ane

contribution. The iterative process proceeds in the s

direction of decreasing energy groups, and hence upscattering

v
E from lower energy groups to higher energy groups is not }}
p AR
b ‘_‘.
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allowed.

In order to verify the full scale radiation transport
code, a known function similar to equations (28) and (29) was
input, only in this case it was a simple exponential o
function. Again, the code output values are very close to

the actual solution. A more important bench mark is attained

by solving the diffusion equation analytically for a simple
case, The analytic solution is outlined in appendix D, along
with the value returned by the transport code. As can be seen
in appendix D, the answer is acceptable, given only a one

mesh space approximation,

Source Transport

The next step in the process is the actual transport of
each library source to the desired ranges. Each of the
sources was reconstructed at the desired ranges, yielding a

degraded set of source spectra due to scattering and

absorption losses. The two types of transported sources are e

..
B saN S

p [

P

discussed below.

RN

The Measured Spectra

In order to simulate measured spectra at various ranges

from the sources, it is necessary to transport the library

spectra in two different fashions, The first method involves

using the transport code (developed above) alone to determine
the relative intensities of each library spectrum at a number
of different ranges. These spectra represent the ideal

measured spectra, since the transport code does not introduce

25
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any random processes or counting statistics by itself, These g
ﬂ:.d

2

X

"reference spectra" thus represent good data sets which would
be obtained from an enormous number of measurements in the
field (i.e., the true mean in each channel).

The second method involves taking the reference (ideal)
spectra mentioned above and converting each one into a
measured spectrum by introducing random counting statistics.
The statistics subprogram introduces random variations in the
counting data in lire with the appropriate statistical
distribution. Two different distributions will be employed in
deriving the measured source spectra: the Poisson
distribution and the multinomial distribution. Since the
measured sources are actually generated during the analysis
part of the problem, the methodology will be covered in
detail in chapter IV and its appendices.

There are now two different sets of spectra which will
be used in the analysis process. The first set consists of a
good group of measured spectra; the "reference spectra,”
which was obtained by the transport of the library spectra.
These reference spectra are equivalent to a set of spectra
determined by many different measurements of the sources.

The reference sources have been plotted out at ranges of 50,
100, 200, 300, 400 and 500 meters, and are presented in
figures 4 through 9. It is important to note that the
reference source spectra are in 47r? fluence units, so they
can be easily compared with the library sources. The actual

values of fluence for the reference sources are tabulated in

26
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tables III-1 through III-6.
The second set of source spectra represents a less than

]

ideal group of spectra; the "measured spectra," obtained by
the transport of the library spectra with the addition of

counting statistics considerations., This group is equivalent

to a set of spectra obtained by taking a single measurement
of the sources. Since the measured sources are generated
during the analysis process, they will be listed in chapter
Iv.

Background Considerations

In addition to the reference spectra and measured
spectra discussed above, the library spectra were generated a
third time, but this time background counts were accounted
for. The background spectrum provided with the high
resolution data was used to determine the mean number of
background counts present in each channel of the reference
source spectra. The measured source spectra are generated in

' but now a

a manner similar to the "no background case,'
separate subroutine is used to generate random background
counts in line with the appropriate statistics. These
background counts are then added, channel by channel, to the
measured source spectrum of interest. Again, the generation

of the measured source spectra is discussed at length in

chapter IV,
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Table IV-1: Sample Prior Distribution

o

Y b £

Source Number in Sample P(Ai)
1 5 0.5 o
2 2 0.2 Y A
3 3 0.3 -

.
PR

The second term in the numerator of equation (30),

L
i

P(X|Ai), is the probability of obtaining the measured

spectrum X given the reference spectrum Ai. This term is a
calculated quantity, and will vary depending on the type of
counting statistics used.

Poisson Distribution.

The first method of determing the values of P(XlAi) will
assume that the counts are collected in a Poisson
distribution. The assumption then is that each one of the
eighteen channels in the low resolution detector is
statistically independent from the others. The Poisson
distribution is a particularly valid one in counting problems
when the average number of counts is much smaller than the
total possible number (i.e., smaller than the number of gamma
photons emitted by the entire nuclear source) (4). Counting
data collected in a Poisson distribution is obtained by
running the detector for an arbitrary length of time, which
generally yields a different number of total counts each
time. This is in contrast to the multinomial distribution,

which will be covered later in this chapter.

44

e mm ot m e n
W N
= -

T - AR . S aTe
At i o S P T
DPUITNITUIGY §. W 0 o Y PR S SR R P




represents the prior distribution of the three different

MiABLD

sources. As a starting point, the three values will be

assumed equal, with

-

P(AL) 0.3333 (33)

]
, T st

P(A2) 0.3333 (34)

R

P(A3) 0.3333 (35)

Y,

In other words, it is assumed that each of the three sources g
occurs equally often., This quantity can be varied to test
the sensitivity of the posterior distribution. In the case ¥
of actual source measurements in the field, the prior
distribution would presumably be know.

As a simple example of the prior distribution, assume
ten containers of nuclear materials have had the identifying -
labels removed. Further, assume that the only way to
determine the identity of the nuclear material in each of the
containers is to measure the spectrum of each with a

multichannel gamma-ray detector at a range of 100 meters. In

T Pt hund OISR

order to use Bayes' Theorem, the prior distribution must be
determined. 1In this example problem, the total number of ~
each type of material is known, so it is a simple matter to
determine the prior distribution, as seen in table IV-1. 1In
the main thesis problem, it is assumed that the prior

distribution is also a given. .
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which is the joint probability of the variables X and Ai

(17). Or, in other words

P(Ai,X) = P(X,Ai) (32)

The denominator in equation (30) is the sum of all the
combined likelihood functions and prior distributions. The
summation is over the total number of reference sources,
which is three in this problem.

As can be seen in equation (30), Bayes' theorem allows
for the combination of prior information {(the prior
distribution of sources) and the measured data (the
likelihood functions) to determine the posterior
distribution, given by P(Ai|X). The posterior distribution
gives the probability (likelihood) of having source Ai,
given the measured spectrum X. For a given measured source
X, P(Al1|X) is the probability that the source Al is actually
the one being measured. The power of this method is that it
clearly allows for the combipation of all available
information in arriving at the posterior distribution,

Applied Form

Having reviewed Bayes' Theorem in its general form, the
next task is to examine it specifically in relation to this
problem. The equation will be examined term by term, and the
specific quantities will be identified as they apply to this
problem.

As was mentioned above, the P(Ai) term in equation (30)

42
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P(XIAi) P(A;)

P(A, |X) = ;
5 § P(X|A,)P(A, (30)
31 ] 3
The variable Ai (where i = 1,3) represents the known data, or

in this case, the reference sources, and X represents the
given sample data, or the measured source. Therefore, P(Ai)
is the probability of occurence of the reference source Ai.
Quite simply, P(Ai) represents the proportion of occurrence
of source Ai, so that if there exists a group of ten nuclear
sources, of which four are known to be of type Al and six of
type A2, then P(Al) = 0.40 and P(A2) = 0.60. This
probability distribution is defined as the "prior
distribution." The prior distribution is the unconditional
probability of Ai occurring.

Given that X represents the observed or measured value

of a source, then the P(XlAi) term in equation (30) is the
probability that the measured source spectrum X is due to the ke
reference spectrum Ai. Given the source spectrum Al then,
P(X|Al) is the probability that a measured spectrum X is
caused by the spectrum Al, This probability is defined as
the likelihood fumtion, and is a discrete value in this i
problem, since there is a predefined number of sources. Note

that the numerator in equation (30) can also be expressed as S

P(A;,X) = P(XIAi) P(4,) (31) NN
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IV. Identification and Analysis of Source Spectra

In chapter II, the library source spectra were derived,
and the methodology for creating the reference spectral
sources and the measured spectral sources was described. 1In
chapter III, the transport code was developed using the
Finite Element Method (FEM). This code was employed to
generate the reference source spectra discussed in chapter
III. Now that all the raw data is available, a technique must
be defined by which the measured sources can be identified
and analyzed. The methods of identification and analysis

will be discussed in this chapter.

Bayes Theorem

\ e . RN
- - C v L S L B L T T AL TS Y
VTN 2T - 3 i WPFIPAIRT WS Sy NP I SO SR W SR TN DU Y W W - N W ay )

General Form.

The method of identifying sources in this thesis will use
Bayes' Theorem. In the general sense, the term Bayesian is
used to describe an approach to combining information that
uses the sample information (i.e., data collected) as well as
other available information (17). In the case of spectral
source identification, the sample information consists of the
measured spectra, and the other infor;ation is the set of
reference spectra.

Bayes' theorem allows one to make an assessment of the
likelihoods of the occurence of certain events, given the

sample information. In terms of the variables X and A (top

of next page):
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TABLE III-6 ?5
’ Relative Intensity Distribution of Reference Source C
(counts / photon)
’ Group Number 300 meters 400 meters 500 meters .
1 0.0 0.0 0.0 ffﬂ
’ 2 0.0 0.0 0.0 '3;
3 0.0 0.0 0.0 -
4 0.0 0.0 0.0 ii'
g 5 0.0 0.0 0.0 3
6 2.78E-15 9.35E-16 3.58E-16 }i'
7 1.45E-14 4.73E-15 1.81E-15 &i
’ 8 2.28E-14 7.23E-15 2.84E-15 R
9 1.02E-14 3.96E-15 2.29E-15 Ei
10 3.37E-14 1.07E-14 4.66E-15 ﬁz
4 11 1.75E-14 6.23E-15 3.43E-15 ';
12 3.54E-14 1.17E-14 5.81E-15 E}
13 1.29E-13 4.04E~14 1.90E-14 ]
‘ 14 1.52E-13 4.51E-14 2.18E-14 7 
15 1.14E-12 3.36E-.3 1.54E-13 Eif
16 1.69E-11 6.31E-12 3.15E-12 iﬁ-
17 4.00E-11 1.62E-11 9.24E-12 .
18 6.75E-12 2.73E-12 1.58E-12 Eiﬂ
-
S
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n Relative Intensity Distribution of Reference Source C

!. Group Number
e 2
: ‘
- 6
-
7
i :
9
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"!o 11
:{ 12
:’ 13
NI
8 C 14
15
16
. 17
18
<
Y
i [}
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TABLE III-5

(counts / photon)

50 meters

0.0

0.0

0.0

0.0

0.0
3.61E-13
2.02E-12
3.40E-12
2.37E-13
5.23E-12
5.42E-13
4,76E-12
2.67E-11
2.76E-11
3.56E-10
1.29E-9

1.31E-9

3.41E-10

100 meters

0.0

0.0

0.0

0.0

0.0

6.98E-14
3.85E-13
6.43E-13
1.08E-13
9.76E-13
2.321E-13
9.22E-13
4,.55E-12
5.08E-12
5.55E-11
3.00E-10
4,49E-10

8.99E-11

200 meters

0.0

0.0

0.0

0.0

0.0

1.04E-14
5.61E-14
9.14E-14
3.05E-14
1.37E-13
5.81E-14
1.39E-13
5.60E-13
6.75E-13
5.71E-12
5.67E-11
1.17E-10
2.02E-11
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TABLE III-4 é?

Relative Intensity Distribution of Reference Source B 2
(counts / photon) E;-

p

rJ

Group Number 300 meters 400 meters 500 meters .
".

1 0.0 0.0 0.0 -
2 0.0 0.0 0.0 £
3 0.0 0.0 0.0 Q
4 0.0 0.0 0.0 iz
5 0.0 0.0 0.0 i
6 4.49E-15 1.51E-15 5.80E-16 3
7 1.60E-14 5.29E-15 2.06E-15 IE‘
8 1.15E-14 3.91E-15 1.77E-15 ﬁ!
9 1.04E-14 3.76E-15 1.95E-15 3
10 1.30E-14 4.85E-15 2.65E-15 ;ﬁ
11 1.33E-14 4.45E-15 2.23E-15 _
12 9.46E-14 2.39E-14 8.04E-15 Ef
13 5.84E-12 1.53E-13 5.60E-14 F
14 1.14E-12 2.71E-13 1.01E-13 ‘¥
15 3.97E-12 1.59E-12 9.56E~13 {
16 2.45E-11 1.0SE-11 6.19E-12 ﬁ
17 4.54E-11 2.08E-11 1.30E-11 v
18 7.53E-12 3.46E-12 T 12 ;f
2
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TABLE III-3 >
Relative Intensity Distribution of Reference Source B il

(counts / photon) Y

Group Number 50 meters 100 meters 200 meters A;*

3

o~

hot

1 0.0 0.0 0.0 -9

A 2 0.0 0.0 0.0 i
3 0.0 0.0 0.0 53

4 0.0 0.0 0.0 S

3. 04

- 5 0.0 0.0 0.0

6 5.84E-13

2.20E-12
1.36E-12

1.13E-13 1.69E-14 W

4,21E-13
2.72E-13

6.18E-14
4,29E-14

9 8.49E-13 1.94E-13 3.58E-14 o

10 9.15E-13 2.18E-13 4.29E-14 @;

11 1.67E-12 3.32E-13 5.12E-14 .

12 2.78E-11 4.53E-12 4.88E-13 ﬁi?

13 1.63E-10 2.67E-11 2.94E-12 %%f

e 14 3.75E-10 6.00E-11 6.22E-12 )
15 4.15E-10 8.07E-11 1.33E-11 Egé

16 1.12E-9 3.06E-10 7.12E-11 %?

b

- 17 9.38E-10 3.74E-10 1.17E-10

-]

18 2.34E-10 7.05E-11 1.96E-11
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Relative Intensity Distribution of Reference Source A

Group Number

RS Saa” et “San it T e

TABLE III-2

(counts / photon)

300 meters

400 meters

500 meters

11
12
13
14
15
16
17

18

0.0

0.0

0.0

0.0

0.0

4,16E-15
1.41E-14
2.64E-14
3.55E-14
9.16E-14
1.13E-13
2.54E-13
3.31E-12
3.96E-12
1.02E-11
3.65E-11
5.23E-11

8.55E-12

35

0.0

0.0

0.0

0.0

0.0

1,40E-15
4,65E-15
8.33E-15
1.13E-14
2.75E-14
3.14E-14
6.97E-14
8.08E-13
1.05E-12
4,64E-12
1.85E-11
2.94E-11

4,81E-12

0.0

0.0

0.0

0.0

0.0

5.37E-16
1.82E-15
3.23E-15
4.78E-15
1.10E-14
1.25E-14
2.80E-14
2.56E-13
4,.56E-13
2.98E-12
1.25E-11
2.06E-11
3.37E-12
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Relative Intensity Distribution of Reference Source A

Group Number

10
11
12
13
14
15
16
17

18

TABLE III-1

(counts / photon)

50 meters

100 meters

0.0

0.0

0.0

0.0

0.0
5.41E-13
1.92E-12
4.02E-12
5.04E-12
1.60E-11
2,23E-11
5.37E-11
1.05E-9
7.03E-10
2.40E-10
5.14E-10
3.56E~10

1.93E-10

0.0

0.0

0.0

0.0

0.0

1.05E-13
3.69E-13
7.56E-13
9.70E-13
2.92E-12
4.03E-12
9.51E-12
1.68E-10
1.37E-10
8.97E-11
2.35E-10
2.15E~10

4.87E-11

200 meters

0.0

0.0

0.0

0.0

0.0

1.57E-14
5.42E-14
1.07E-13
1.42E-13
3.91E-13
5.15E-13
1.19E-12
1.76E-11
1.85E-11
2.67E-11
8.41E-11
1.03E-10

1.72E-11
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The Poisson distribution is given by -

- "
X ~.

P(x,a) = %T exp(-a) (36) -

H -;.'

' -
where the variable a is the mean number of counts occurring i

in the channel of interest, and x is the observed number of E

L]

hd counts in the channel (4). Or, in the case of a multichannel !
detector, equation (36) becomes i

: o

v p (aik)xk ( (37) 3
(xray0) = x,  F “35k) -

L4 where k denotes the channel number, which ranges from one to !
-

eighteen. In order to get an expression for P(X|Ai), the N

N

individual channel probabilities must be combined into a §

<,

L single probability. This is achieved by noting that since :
o

the channels are statistically independent of one another, “

&

o

the probabilities multiply. Hence the relationship becomes ~

. ;
18 (aik)xk \

P(X]Ai) = ]I <1 exp(-a;,) (38) S

k=1 k o

- N
i)

\ The mean number of counts in channel k is given by aik, and i
‘ comes from the reference spectrum, discussed in chapter III E
‘- (ref. figures 4 - 9)., The final form of equation (38) then ﬁ
=

A

Y e

becomes (top of next page):

5 D]
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P(XIAi) =1

o o exp(-(Sy, + Ek)) (39)

Here Sik represents the mean number of counts from reference
spectrum i (i = 1,3) in channel number k (k = 1,18) and Bk is
the mean number of background counts in channel k. Recall
that initially, the analysis is done with zero background
counts in all channels of all sources. Xk in equation (39)
represents the number of counts in channel k observed in the
measured spectrum.

The Poisson version of the Bayes' theorem analysis was
coded in the BASIC computer language and run on an Apple II
geries computer. The program listing and description is
included in appendix H.

The value of Xk, obtained from the measured source
spectrum, is obtained using a random number generator and the
Poisson distribution. Details of this process are covered in

appendix G. On the other hand, the values of Sik come from

the reference source spectra, which were discussed in chapter

oA
fr
3

ITII. The method of obtaining numerical values for the

=

_‘v.,V

reference sources is discussed in appendix F. ‘Eﬁ

( i

Gaussian Distribution. »

cS

In the limit of a large number of counts, the Poisson }{J

o

distribution approaches the normal or Gaussian distribution, Qi

i)

.l

which is given by (top of next page): P

. -
d ’..
1
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18 exp(—%(xk - (gik + Ek))/cik)
P(X|A.) =1
SR (2m02,,) *? (40)

Here, 0ik is the standard deviation of the counts of source i
in channel k. The standard deviation squared is therefore
equal to the number of counts observed in the channel of
interest, Xk. All other terms in equation (40) are defined
the same as in the Poisson distribution.

In practice (in this problem) the Gaussian distribution
is used anytime the counts measured in any one channel exceed
34, since the factorial in the denominator of the Poisson
distribution (equation (39)) exceeds the overflow limits of
the computer (1E+38). The Gaussian version of the Bayes'
theorem analysis was also coded in BASIC, and is included in
appendix H.

A new measured source spectrum is generated each time
the analysis code is run, and hence determines the values for
Xk in equation (40). The method of obtainining a measured
source spectrum with a Gaussian distribution is contained in
appendix G, The method of obtaining reference source spectra
is the same as in the Poisson version,

Multinomial Distribution.,

The second main method of performing the Bayes' theorem
analysis employs the multinomial distribution. Unlike the
Poisson (and Gaussian) distribution, the counts in the

different channels of a multinomial distribution are all

47
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interdependent (2). To obtain a multinomial distribution in
a multichannel analyzer, counts are collected until a certain
predetermined total is reached, at which time the detector is
turned off. By collecting in this manner, the number of
counts collected in one channel becomes dependent on the
counts in all other channels (10). This dependence follows
quite simply because each count collected in one channel
decreases by one the total counts available for all other
channels. In terms of equation (30) variables, the

multinomial distribution is given as

NI B X
P(XIAi) = W 'k]E (£,,)7°k (41)
k= Ak. =1

Here Xk again represents the measured number of counts in

channel k, subject to the constraint

o

Lx =N (42)

Ve

where N is the the total number of counts in all channels
combined (13). The variable fik is the fraction of the
counts of source i occurring in channel k. The fik's are
obtained from the reference source spectra and the
methodology is discussed at length in appendix F. The fik

values are subject to the constraint

18
Z f = 1 4

i 3
ke ik ( )
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for each source.

As was true in the Poisson and Gaussian analysis codes,
the multinomial analysis code is contained in appendix H.
The method of obtaining the measured source (Xk) is discussed

in appendix G, and the reference sources (fik) in appendix F.
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V. Results and Discussion

Having the reference sources in hand, the problem
remains to analyze the measured sources at the ranges of 50,
100, 200, 300, 400 and 500 meters from the source. The
sections in this chapter will be presented in order of the
analysis runs. First the Bayes' theorem analysis is done
using Poisson statistics with no background contribution.
Secondly, the multinomial version of Bayes' theorem is used,
again with no background. Thirdly, the Poisson version will
be run again, but this time using the background contribution
discussed earlier. Finally, an unknown source will be
"measured" in one pass at a distance of 50 meters, to see how
the Bayes' posterior distribution behaves with a nonlibrary

source spectrum.,

Bayes' Theorem With Poisson: No Background

The Bayes analysis code using the Poisson statistics

package was run at all ranges using each of the three sources
Y as a measured source once at each range. Hence, this

constituted 18 runs using the Poisson and Gaussian codes

-

(depending on the level of counts, ref. chapter IV). The

e

- baseline level of counts was assigned as 1000 counts at 50
meters. This corresponds to a collecting time of

approximately 30 minutes, using the one square centimeter

[ detector assumed in this problem. An equal counting time was
assumed for each measurement, in line with Poisson counting R
50 o
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statistics. The total number of reference counts in each LN

]
B

v
py.

source and the measured source values for each run were

determined as discussed in appendices F and G.
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The results of the posterior distribution are presented
in table V-1. As can be seen in the posterior distribution
for measured source A, the probability of positively
identifying the measured source drops below the 99.77% level
near the 200 meter mark, buf stays above 70%Z all the way out

to 500 meters. Measured sources B and C do not stay above

the 70%Z level, although source C remains well above the 907

level out to 400 meters. Part of the reason for the

consistantly high values with source A is because of the

relative strength of the source. As can be seen in table

@ V-3, measured source A has a total of 20 counts collected,
which is twice the number of counts in both sources B and C
at 500 meters. This follows because library source A has

¢ more high energy features relative to sources B and C, and
high energy photons are degraded less severely than are low
energy photons (reference cross section data in appendix B).

L] When comparing these results to the method of photopeak
identification (reference appendix A), it is evident that the
uncollided photons are rapidly degraded by the exponential

- scattering term, and the peaks soon drop below the 3 sigma
level. As can be seen in appendix A, the characteristic
photopeak of source B has already degraded below the 3 sigma

v level at 50 meters, and the photopeaks of sources A and C

drop below 3 sigma shortly beyond 50 meters. Therefore,
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Table V-1 )
)
‘ Bayes' Posterior Distribution -
")
(Poisson with no background) X
1. Measured: Source A %
v RANGE (m) P(A1]X) P(A2]X) P(A3[X) 2
50 1.000 0.000 0.000
100 1.000 9.081E-21 0.000 5
o 200 9.913E-1 8.660E-3 7.707E-5
300 8.780E-~1 1.192E-1 2.800E-3
400 7.810E-1 1.891E-1 2.989E-2 B
& 500 7.396E-1 2.113E-1 4.,908E-2
2. Measured Source B
RANGE (m) P(A1[X) P(A2]X) P(A3]X)
& 50 0.000 1.000 0.000
100 0.000 1.000 1.626E-6 =
200 6.926E-8 8.671E-1 1.329E-1 ]
| 300 8.519E-2 8.049E-1 1.099E-1
400 7.682E-3 4.599E~1 5.324E-1 =
500 1.862E-3 4.192E-1 5.790E-1 ‘.
L 3. Measured Source C s
RANGE (m) P(AL|X) P(A2][X) P(A3|X)
50 0.000 0.000 1.000
. 100 0.000 0.000 1.000
200 5.543E-25 2.310E-4 9.998E-1 3
300 7.065E-5 8.319E-2 9.167E-1 -
¢ 400 2.834E-7 7.390E-2 9.261E~1
500 1.396E-2 4.919E-1 4.942E-1
52
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Table V-2

Measured Source A (Poisson Distribution)

ey

o
»

o
..

-

s

A
-

Pt
L

. EIE).:"‘ o %y

channel 50 m 100 m 200 m

"' "
.
AR
 adll.

o
Py ‘. T ‘v 'l
i L._ ot P

v

number counts counts counts

"y

2
2

1 0 0 0
0

.
V%

r v
e

AR AR

(o)} (9.} S~ W
o o o o o
[3%)
(=] o o (=] o
o

~
-
= o O
p—

—
o

w O W W
—
[y
—
L

11
12 17 2 0
13 332 54 5
14 222 44 5

15 77 28 9 o
16 162 73 26
17 113 69 32 s

N

. 1
R
tgx ate

18 60 16

::r}
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Table V-3

Measured Source A (Poisson Distribution)

channel 300 m 400 m 500 m
number counts counts counts
1 1 0 0

2 1 0 1

3 1 0 1

4 0 0 0

5 0 1 0

6 0 1 1

7 1 1 2

8 0 1 0

9 0 0 1
10 0 0 0
11 0 0 0
12 1 1 0
13 2 0 1
14 1 0 0
15 3 1 2
16 12 6 3
17 19 10 7
18 3 2 1
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Table V-4 ]

-t

Measured Source B (Poisson Distribution) !ﬁ

channel 50 m 100 m 200 m
number counts counts counts
1 0 0 0

2 1 1 1

3 1 0 1

4 0] 0 0

5 0 0 0

6 1 1 1

7 3 0 2

8 1 1 0

9 1 0 1
10 0 1 0
11 1 0 0
12 7 2 0
13 50 6 2
14 114 18 1
15 127 25 5
16 341 94 21
17 287 114 36
18 71 21 6
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Table V-5

Measured Source B (Poisson Distribution)

'd
e
5
4
4
4
-3
%
=3
R

channel 300 m 400 m 500 m

number counts counts counts
1 1 0 1

0

[0V}

© O© o
—

o O ©

(o] (8]

o b=

o O O o
o O O o o 9~

N

11 1 0
12 0 1

o O

13 2 0
14 1 1 1
15 2

16 7

~ & O
—

17 13

18 2 1 0
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Table V-6

Measured Source C (Poisson Distribution)

i
channel 50 m 100 m 200 m Pﬁ

» . -\

number counts counts counts }i
1 1 1 0 e
-y

2 1 1 »

(<)) w

(] [N = N o
o O O =

= O O O

—

[04)
—
—

Iy

e 0, ey e
P Gty T e CAPA PP
1 1".".‘.'4'_.! S R SR O

e

v
-4,
A d g

o o o
l'l"

I

s,

11 2

o o o (=]
o o

]

.

12 1
13 7 2 2
14 9 2 0
15 106 16 0
16 382 89 18
17 389 134 35
18 101 29 5
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Measured Source C (Poisson Distribution)

channel 300 m 400 m 500 m ™
number counts counts counts \g
1 0 0 0 R
2 0 0 1

3 2 1 0

4 0 1 0

5 0 0 0

6 1 0 1

7 0 0 1

8 o 0 0

9 0 0 0

10 0 2 0

11 0 0] 0

12 1 0 0

13 0] 1 2

14 0] 0 0

15 0 0 0

16 6 1 2

17 13 5 3

18 2 0 0]

P SR A
P S

e e T e Ty
AT I




b tni anih S Wi GaS G MRSl Sl et i Sl ik g EdCEE AL SR DR St v Sl

h
Ny
!

3

’
2

g VT

‘L.l' %. Rl “ N

v s s v e
.

'

*y

eventually the probability in equation (40) becomes zero

(exceeding the computer limits of 1E-38). This leads to a

’
oo
0

zero term in the denominator of equation (30) of chapter IV,

PSRN}
EI Y
AR
ol e

leaving an undefined Bayes' posterior distribution. This

problem is even more likely to occur at higher count levels, ,ﬁ
T
that is, in regions close to the source where photopeak "
._'-:,.
identification is at its best. Hence, when the Bayes' -

-

theorem method yields "undefined" probabilities, it serves as

LT
i ) |
PR

+

an indicator that an unknown source, that is, a source not in
the library, has been encountered. Other methods must then

be used to determine the composition of the new source.

Applying the Results

What can be learned from these results that can be
applied to experiments in the field? First of all, it
appears from the contrast between the Poisson and multinomial
statistics that it is far better to run the detector as long
as possible in order to optimize the number of counts
(Poisson). If the detector is automatically shut off after
reaching a certain number of counts, much information is lost
from the stronger sources. This effect was observed in the
Poisson runs without background. Indeed, even though all of
the sources used in this analysis were assumed to be of equal
strength, a slight statistical increase in the number of
counts (source A) was significant in terms of positive
identification.

Another point of interest uncovered in the analysis is

72

N R P
. L e T T e T e T e e

R I L I N L 4

- L R L

-
. ® . B DI L, PR
al S - LA ST N ST T ST ST SU Sy WP . DY, UL L D e b Aaaln




S S i
7
7
=
o
5
Table V-13 ]
Measured Source C ;—.—v
(Poisson Distribution with Background) ".j-t'_:.
channel '-]
number 50 m 100 m 200 m 300 m 400 m  500m ]
1 2 4 1 1 1 2 S
—
2 0 1 0 0 0 0 !!j
3 1 0 0 0 2 2 N
4 2 0 0 1 2 0 g
5 1 0 0 2 0 1
6 1 3 2 3 4 0
7 6 6 6 5 4 6
8 7 3 4 7 5 6
9 21 19 23 22 20 22
10 24 23 22 26 23 24
11 241 242 242 241 240 240
12 23 21 25 22 26 24 i
13 48 41 41 40 40 41 -
14 46 40 41 40 41 40 ”y
15 167 77 64 61 61 62 =k
16 529 237 162 151 148 145 =
17 472 217 117 94 83 83 =
b
18 140 66 43 39 39 40 =
71
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Table V-12
Measured Source B

(Poisson Distribution with Background)

channel

number 50 m 100 m 200 m 300 m 400 m 500m

1 3 1 2 1 1 0
2 1 0 1 3 1 0
3 0 0 0 1 1 2
4 2 1 0 0 0 1
S 2 2 0 1 2 1
6 0 1 4 1 7 3
7 5 S 5 5 S 6
8 5 5 4 4 5 S
9 22 20 23 21 20 19
10 24 23 22 23 24 22
11 240 242 241 243 241 240
12 31 24 24 22 22 23
13 90 50 41 44 42 39
14 153 56 39 39 39 40
15 192 88 63 62 60 61
16 488 241 168 150 149 149
17 370 197 115 94 87 86
18 111 59 45 41 38 38
70
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Table V-11
Measured Source A

(Poisson Distribution with Background)

channel

number 50 m 100 m 200 m 300 m 400 m 500m

1 1 1 0 2 1 0
2 0 0 1 0 0 1
3 1 1 0 0 1 2
4 1 1 0 0 1 2
5 0] 0 3 1 1 0
6 0 3 3 1 1 0
7 5 7 5 5 5 1
8 6 5 4 7 5 7
9 24 22 19 24 22 21
10 29 26 24 23 23 24
11 249 240 240 240 241 241
12 40 26 21 23 22 23
13 372 94 47 42 - 43 42
14 262 83 45 39 40 39
15 139 91 67 64 62 61
16 309 220 174 158 152 151
17 194 149 116 96 90 88

18 101 54 43 41 38 38
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Figure 12. Posterior Distributions: Poisson with Background
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Table V-10

~~~~~~~

.........

Bayes' Posterior Distribution %
(Poisson with background) ;
1, Measured: Source A 5
RANGE (m) P(AL [X) P(A2(X) P(A3|X) E
50 1.000 0.000 0.000
100 1.00 7.463E-11 4.244E-19 1
200 5.384E-1 3.026E-1 1.591E-1 g
300 3.783E-1 3.424E-1 2.793E-1 :
400 3.642E-1 3.339E-1 3.019E-1
500 3.611E-1 3.319E-1 3.070E-1
2. Measured Source B
RANGE (m) P(AL[X) P(A2]X) P(A3]X)
50 0.000 1.000 0.000
100 8.479E~15 9.886E-1 1.140E-2
200 1.488E-1 4,297E-1 4.215E-1
300 2.841E-1 3.739E-1 3.420E-1
400 3.104E-1 3.464E-1 3.432E-1 é
500 3.368E-1 3.380E-1 3,252E-1 é
3. Measured Source C a
RANGE (m) P(ALIX) P(A2]X) P(A3]X) 3
59 0.000 0.000 1.000 Si
100 0.00 1.691E-3 9.983E-1 f
200 1.571E-~1 4.182E~1 4.247E~1 3
300 2.814E-1 3.447E-1 3.739E~1 ;3
400 2.764E-1 3.514E-~1 3.722E-1 E
500 3.060E-1 3.442E-1 3.499E-1 3
3
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probabilities for positive source identification degrade much
more rapidly than in the case with no background. All three
sources maintain high probabilities of positive
identification out to 100 meters, at which time the
background level overwhelms the number of source counts. But
as can be seen in tables V-11 - V-13, the source counts in
each channel are already becoming obscured by background at
100 meters (compare with tables V-2 - V-7). 1In cases with a
large amount of background then, Bayes' theorem appears to
lose information quite rapidly, but still offers some

improvement over the method of photopeak identification.

The Unidentified Source

One of the severe limitations of Bayes' theorem applied
to spectral identification appears to be in the realm of
identifying unknown sources, or sources simply not contained
in the source library. When an unknown source was formulated
which differed considerably from the library sources, the
Poisson (Gaussian) analysis failed to return any numerical
information whatsoever.

The problem is identified when examining equation (40)
in chapter IV. When using the normal distribution (i.e., in a
region of reasonable count levels), any excessive deviation
from the reference value in a channel results in an extremely
small value of P(X |Ai), due to the exponential term. This
problem is compounded if every one of the eighteen channels

differs from each channel of the reference sources, since
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Table V-9
* Relative Intensity and Count Levels of Background
Channel Counts/photon Counts
®
1 0.0 0.0
2 0.0 0.0
o 3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
¢ 6 2.58E-3 1.29
7 1.01E-2 5.04
8 9.17E-3 4,59
® 9 4.18E-2 20.89
10 4 ,56E-2 22.82
11 _ 3.64E-2 240.00
® 12 4,51E-2 22.56
13 8.11E-2 40.57
14 7.79E-2 38.95
¢ 15 1.21E-1 60.66
16 2.92E-1 145,96
17 1.61E-1 | 80.56
9 18 7.58E-2 37.91
-
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Bayes' Theorem With Poisson: With Background

In order to incorporate a background level into the
Bayes' theorem analysis, it was necessary to generate a
separate background "source" based on the high resolution

data used to generate the original library sources (ref.

chap. 2). The background measurements were taken at the same

time the original source measurements were made, and
therefore should accurately reflect the background in the low
resolution detector of this problem. The relative intensity
distribution of the background is presented in table V-9, A
background level of 500 counts is assumed, based on the
background measurements taken with a counting time of about
30 minutes (as before). The reference levels based on this
number are also provided in table V-9, Since the Poisson
distribution is being used, the background level will remain
constant at each range (i.e., same counting time).

The reference level of counts was added channel by
channel to each reference source spectrum, and a random
(measured) background count level was determined separately
using the same method as was discussed in appendix G. Hence
the random number generator is called upon twice: once to
generate the "normal" measured source spectrum, due to the
photo emissions of the nuclear material, and once to generate
the measured background spectrum. The results of both
calculations are then combined to yield a final measured
source spectrum for the analysis process.

As can be seen in table V-10 (and figure 12), the
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Table V-8

Bayes' Posterior Distribution

(Multinomial with no background)

1. Measured: Source A
P(ALllX) P(A2]X)
1.000 0.000
1.000 3.176E-30
9.999E-1 8.493E-5
2.398E-1 7.586E-1
3.743E-1 4,165E-1
4,452E-1 3.483E-1

2. Measured Source B

P(A1l]X)

0.000

2.429E-29
1.470E-1
1.378E-1
1.755E-1

2,673E-1

P(A2]X)

1.000
1.00
8.468E-1
8.622E~1
3.344E-1
3.397E-1

3. Measured Source C

LI
W,

P(AL|X)

0.000

0.000

7.598E-8

3.223E-2

1.790E-1
1.798E-1

P(A2]X)

0.000

5.675E-12
1.349E-2

9.504E-2

3.355E-1
3.060E-1

P(A3[X)

0.000
0.000
1.101E-11
5.949E-4
2.092E-1
2.066E-1

P(A3]X)

0.000
3.852E-14
6.219E-3
1.453E-5
4,902E-1

3.930E-1

P(A3[X)

1.000
1.000
9.865E-1
8.727E-1
4.855E-1
5.142E-1
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Bayves' Theorem With Multinomial: No Background

As was discussed in chapter IV, the multinomial
distribution is used when the detector counts to a
predetermined number of counts, then shuts off. This method
was programmed in order to contrast its effectiveness with
that of the Poisson distribution, which has no constraint on
the number of counts collected. The posterior distributions
from the multinomial runs are presented in table V-8,

Even though the multinomial analysis was done using the
same initial reference count level of 1000 counts at 50
meters, it can be seen that the probabilities of accurately
identifying a measured source drop off much more drastically
than do the Poisson values. The assumption that each source
measured has exactly the same number of counts (the basis for
this distribution) probably drives the values down more
rapidly as the range increases., Recall in the case of
Poisson statistics, source A had more total counts collected
at 500 meters than did either of the other measured sources,
which aided in maintaining a higher probability with
increased range.

The results presented in table V-8 are also depicted
graphically in figure 11, Since the multinomial distribution
yields lower values of probability, the Poisson methodology

will be used exclusively in the remaining analysis effort.
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Bayes' theorem extends positive identification a minimum of

100 meters for sources A and C, and 50 meters for source B

; (MR X & & ¢ 5 2 mumma -

(reference table V.1).
The most striking aspect of the Bayes' probabilities is

that they remain relatively high even though the number of

ST RN o2 g

counts available is very small. Indeed, all three source
spectra look strikingly similar at 400 meters, yet measured :
source A is still identified 78.1%Z of the time, and measured i
source C 92.67% of the time. Therefore, if the criterion for
positive identification is reduced to a level less than 3

sigma, Bayes' theorem can extend the range of identification i
even further. ‘

This is in contrast to the method of photopeak

identification, which fails at relatively small ranges i
(around 50 meters). This failure is due to the small number -
of uncollided photons available, since the number is rapidly

reduced bty the exponential term in Beer's Law (appendix A).

Y e

Even large photopeaks cannot withstand the exponential losses

L] "".'-‘

in conjunction with the rising background level due to

~

v

-

downscattered photons. Indeed, in regions where enough -

photons exist to render photopeak identification viable 5
(close to the source), Bayes' theorem will also return i
favorable results, as evidenced by the 100% values at a range i

2
of 50 meters. S

The results of the Poisson version of the Bayes'

v .
£ ¢ 5 F

v

analysis are plotted in figure 10.
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the inability of Bayes' theorem to generate information on
non-library source composition. A possible solution to this
problem might be to build up a vast number of library sources
based on the gamma ray spectra of specific isotopes. When an
unkown is encountered, the Bayes' analysis could be run using
different combinations of the isotopic reference sources,
until a reasonable posterior distribution is reached. The
probability of occurrence, P(Ai), could also be modified in
order to reach a high degree of certainty. Chapter VI will
briefly discuss some follow on recommendations based on this

subject.
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VI. Summary and Recommendations

|
To summarize this thesis problem, the purpose was
test Bayes' theorem, in theory, as an aid to extending
- range of positive identification of nuclear materials,
features in the characteristic gamma ray spectra. To a
this goal, four basic steps were initiated, as covered
. first four chapters of this report. First, the library

source spectra had to be selected, by studying availabl
resolution gamma ray spectra. These were then regrouped
< a convenient, low resolution form for which macroscopic
sections are available (18 groups). Secondly, a transp
code was developed using the Finite Element Method to
transport these library sources to any desired range, i
order to come up with the reference sources, or in othe
words, the sources which might result from the ideal
measurement of the source spectra at a distance. Third

reference sources were degraded into simulated measured

sources by applying various statistical distributions,

included the Poisson (and Gaussian) and the multinomial

L)

to

the
using
chieve

in the

e high
into
cross

ort

n

r

, the

which

=
distributions. And lastly, the measured sources were analyzed
using Bayes' theorem in order to assess the probability that
) each measured source would be correctly identified. The
= results were compared with the method of photopeak
identification, to see if any improvements could be gained by
_ using Bayes' theorem,
~ As can be seen by the results in chapter V, Bayes'
74
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theorem has strong points and weak points. As was seen in

a
a’s

i the case of measured sources with the background extracted,
-, Bayes' theorem offers a dramatic increase in the accuracy of

identification when contrasted with photopeak identification.

:
;

When background is not extracted from the measurements prior

Al

B

to analysis, the results are less convincing in the low count

*
’
L

»
L)
FRE S N

O

- environment (i.e., measurements taken at extreme distances),

but still offer an improvement over photopeak identification.

MR

i
v

B d 2 3L

9 The major disadvantage with Bayes' theorem appears to be the

(N
2

- requirement for the measured sources to be contained as

library sources in order to be identified.

‘\dv ‘i.‘

M
AN
LA

- Recommendations
Bayes' theorem does indeed extend the range of detection

of nuclear materials, but much more research needs to be

PP oo DELN

done. Some follow-on areas of research include investigating

the utility of Bayes' theorem on high resolution data.

Theoretically, the results should be even more dramatic than
in the low resolution case. This is evident from equation

be € (40) in chapter IV, where it is seen that the deviations

between measured and reference (library) counts in channels

.
«

.
.
’
»

’
P

will make the probability extremely small in the case of a

-~
’

[ mismatch, since the multiplication has increased from 18

channels to a much larger number of channels. Therefore, the

B ) ¥

probability of measuring the wrong source will approach a

i\ small number (possibly zero) much more rapidly than in the 18

channel scenario. An interesting follow-on effort could test
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this concept by increasing the number of channels to some
(arbitrary) large number. The 18 gamma group cross section
data could be interpolated to accomodate this larger number
of energy groups.,

Secondly, a method should be investigated that can
adjust the prior distribution in conjunction with the library
sources in order to positively identify new sources. As was
mentioned in chapter V, a large number of isotopic library
sources might be developed and used in combination with the
prior distribution to determine if Bayes' theorem can aid in
identifying new sources. As it stands now, the results
discussed in chapter V show that Bayes' theorem yields no
information on new source composition, when only a small
number of library sources is available. This aspect of
Bayes' theorem is a potentially complicated problem, and

unfortunately, time didn't allow it to be addressed in this

effort.
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Appendix A: Photopeak Analysis Considerations

Photopeak Analysis in Theory.

As has been mentioned in several places throughout the
main text, the basic premise of this thesis is to extend the
range of spectral identification by applying Bayes' theorem to
measured spectra instead of the method of photopeak
identification. The principal difference in these two methods
is that photopeak identification uses only the uncollided
fluence as an identification feature, whereas Bayes' theorenm
uses both the uncollided fluence and the scattered fluence as
useful information for means of source identification.

Mathematically, the virgin (uncollided) fluence is

v attenuated exponentially, as is seen in Beer's Law:

(44)

I(r) = I,(r) exp(-Ztr)/4mr?

. t. . .
In equation (44), £ is the total macroscopic cross section for

e
v

interaction for photons at the given energy. Hence, any

interaction, including absorption and scattering, removes a
photon from the uncollided fluence catagory.

In order for a photopeak to be useful for source

L Sl A I N AN 4 > gt
"

it must be a minimum of three standard

4

identification purposes,
deviations (sigma) above the background level. In the case of
the Poisson distribution, one standard deviation is the square
- root of the number of counts in the given channel. A three

sigma level provides a 99.73 percent certainty of positive
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identification (4). Therefore, when a photopeak falls below

the three sigma level, the method of photopeak identification

is no longer reliable. Since Bayes' theorem uses a portion of

the downscattered photons for identification purposes, it
should in theory extend the range of source identification

beyond the range where the photopeaks drop below the three

sigma level.

Photopeak Analysis in Practice.

In this problem, the three sigma criterion must be
evaluated at each range at which the Bayes' theorem analysis is
being performed. This involves first selecting distinct
photopeaks in each high resolution source which makes each
source unique.

Each of the original high resolution sources was examined
for one very distinct line for the purpose of comparison. In
source A the line occurs in channel 10, in source B it occurs
in channel 12, and in source C the "test" photopeak also
appears in channel 12, These photopeaks were then degraded
using the following assumptions:

(1) the line occurs at the center of the low
resolution channel;

(2) so that

the line is infinitesimally narrow,
no photons can downscatter into the photopeak;
(3) the background (continuum) in the low

resolution bin is divided equally among all

the high resolution channels present in the bin.
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In order to examine the "best case" for the method of
photopeak identification, the relative intensity of each of
the photopeaks at the source is used to calculate the number
of uncollided counts present in the photopeak at a range of
50 meters. The count levels in the low resolution channels
are obtained from tables V.2 through V.7 (Poisson
Distribution with no background). The number of counts in
each photopeak is determined using Beer's Law., This number
is then subtracted from the number of measured counts in the
appropriate low resolution channel, and the rest of the
counts are divided equally among the high resolution
channels, giving a smooth background level in accordance with
assumption (3) above, Figure 13 illustrates the relationship
between the low resolution bin and the high resolution
structure.

As can be seen in figure 13, as the range increases, the
photopeak will degrade in accordance with Beer's Law and the
relative background level will increase as photons
downscatter into the bin from higher energy channels.

The analysis was performed on the three photopeaks

discussed above, and the results are contained in table A-1.
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COUNTS

total:

photopeak:

sigma:
3 sigma:

bkgd.:

COUNTS

total:

photopeak:

sigma:
3 sigma:

bkgd.:

COUNTS

total:

photopeak:

sigma:
3 sigma:

bkgd:

TABLE A-1

Photopeak Degradation

1.

Source A

50 meters

6.00
4.00
2.39E-1
7.17E-1
5.71E-2

2.

100 meters

1.00

8.27E~9
1.69E-~1
5.07E~1

2.86E-2

Source B

50 meters

7.00
1.30
5.34E-1
1.60
2.85E-1

3'

100 meters

2.00

2.38E-~9
3.16E~1
9.49E~1

1.00E-~1

Source C

50 meters

o o O
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100 meters

0

0

— M ey ae me s Ak Aok ey et g ekt Bl i il Shdh e e ".'!'!l!!E‘!!!!lIJ!!! .ﬂ‘w'.v‘."". ha Sl Ml Sl A A Sl AN NI SN N AR
- F

200 meters

1.00
3.87E-10
1.69E-1
5.07E-1

2,86E-2

200 meters

0

o O oO© o©

200 meters

0

o o©oOo O O




——— Lar ™ Ve VG W W WS

Appendix B: 18 Gamma Group Cross Sections

]

This appendix contains the data file listing of the 18 ;E
group sea level air gamma cross sections used in the 23
radiation transport process. All cross sections are gﬁ
4

macroscopic, the units being inverse centimeters. The list ig
begins with gamma group one (highest energy group) and E?

;_
R

continues down to group eighteen., The first two numbers in

each group (separated by a comma) represent the group

PAEPLE
,

transport cross section and the group total cross section, in

that order. The next value in each group is the cross

section for scatter from group one into the current group. Cf
v
The next cross section is the scatter from group two, and so :j
.
on, until within group scatter, which is the last cross ..
S
section in each group (14). i
R
N
4
2.6781E-5,3.0663E-5 (Group 1, 8000 - 10000 KeV)

X

1.2991E-6 (}
o8
2.9082E-5,3.3578E-5 (Group 2, 6500 - 8000 KeV) - -f:
o

2.1316E-6 I
1.5056E-6 o
L'-:'

3.0430E-5,3.7458E-5 (Group 3, 5000 - 6500 KeV) iﬁ
L)

2.2584E-6 »
3.2793E-6 oY
Yt
t \\
2.3603E-6 Qﬁ
"
3.4609E-5,4.2309E-5 (Group 4, 4000 - 5000 KeV) 3
1.6760E~6 i
82 2
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2.3213E-6
3.4861E-6
2.5878E-6
3.5861E-5,4,.8296E-5 (Group 5, 3000 - 4000 KeV)
1.9585E-6
2.6055E-6
3.7052E-6
5.6385E-6
4,2018E-6
4,4473E-5,5,4819E-5 (Group 6, 2500 - 3000 KeV)
1.1661E-6
1.5069E-6
2.0530E-6
2.9597E-6
4.6506E-6
3.4867E-6
4.5947E-5,6.1097E-5 (Group 7, 2000 - 2500 KeV)
1.3771E-6
1.7477E-6
2.3140E-6
3.2071E-6
4,7851E-6
7.3590E-6
5.1337E-6
5.2539E-5,6.8224E-5 (Group 8, 1660 - 2000 KeV)
1.1220E-6

1.4045E-6
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1.8185E-6 .

2.4386E-6 3

3.4698E-6 fiﬁ

5.0735E-6 EE

7.4414E-6 ig

5.3179E-6 8

5.3610E-5,7.5903E-5 (Group 9, 1330 - 1660 KeV) ;?
i

1.3140E-6 -3

1.6295E-6 =

2.0759E-6 Ezj

2.7143E-6 5

3.7127E-6 E%

5.1831E-6

7.2570E-6

1.0756E-5

7.6158E-6

5.1254E-5,8.6398E-5 (Group 10, 1000 - 1330 KeV)

1.6733E-6

2.0597E-6

2.5888E-6

3.3107E-6

4.3618E-6

5.8008E-6

7.6914E-6

1.0725E-5

1.5861E-5

1.2197E-5
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6.1939E~5,9.8011E-5 (Group 11, 800 - 1000 KeV)
1.8052E-6
1.6008E-6
1.9948E-6
2.5154E-6
3.2290E-6

4,.1378E-6

5.2363E-6
6.8793E-6
9.4990E-6
1.5564E-5
1.2529E-5
5.4339E-5,1.1023E-4 (Group 12, 600 - 800 KeV)
1.6878E-6
2.0662E-6
2.5674E-6
3.2143E-6
4.0659E-6
5.0889E-6
6.2289E-6
7.7982E-6
1.0093E-5
1.5022E-5
2.5010E-5
1.9937E-5
3.2786E-5,1.2779E-4 (Group 13, 400 - 600 KeV)

1.5137E-5
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1.3442E-5
1.1976E-5
1.0767E-5
9,9962E-6
9.7302E-6
1.0069E-5
1.1029E-5
1.2672E-5
1.6497E-5
2.3561E-5
3.8612E-5
3.6189E-5
4.9010E-5,1.4714E-4 (Group 14, 300 - 400 KeV)
1.7477E-6
2.1519E-6
2.6905E-6
3.3851E-6
4.2817E-6
5.3081E-6
6.3437E-6
7.5724E-6
8.9861E-6
1.1101E-5
1.3958E-5
1.8611E-5
3.5381E-5

3.7459E-5
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1.7734E-5,1.6655E-4

1.1719E-6
1.5017E-6
1.9791E-6
2.6574E-6
3.6515E-6
4.9480E~6
6.4615E-6
8.5184E-6
1.1264E-5
1.6018E-5
2.2300E-5
2.7297E~5
3.6680E-5
6.4487E-5
6.4947E-5

5.2605E-5,1.9710E-4

0

o O © O o

.........

(Group 15,

(Group 16,

200 - 300 KeV)
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6.5306E-7

5.7746E-6

1.9534E-5

4.5196E-5

1.0160E-4

1.4823E-4
1.4686E-4,2,4089E-4
0

0

o O

o

o O o o o o o o o

0

4,8024E-5

2.0558E-4
3.6340E-4,4,0987E-4
0

0

(Group 17,

(Group 18,
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Appendix C: Simplifying the Three-Dimensional

Transport Problem -

This appendix will outline the steps by which the

i DR

three-dimensional, time independent, radially symmetric

diffusion equation is reduced into a one-~-dimensional problem.

O e Vg

By simplifying the diffusion equation in this manner, the
approximating polynomials developed for the one-dimensional

problem in chapter III are still applicable.

',','. Te R
e s '.lq‘. T
e mdeadeabde PR

Beginning with the time independent, spherically

voe
4 R
)

symmetric form in three dimensions

. "

R
PR b,
o0t ]

Pty

1 d _.dF ap _
D q-riy; +IF =35 (45)

r
1

Y

:
v
’

Next, a simple substitution is made in equation (45), as

e
4, I
2L,

J

follows

RO

o
L

u(r) = rF(r) (46)

KN o 0N

’
e,

By solving equation (46) for F, substituting back into

. .
12 2
%

o

equation (45) and collecting terms, the resulting equation is

4

SR, ATPON
g .

-

L E 4 4 2

D d’u, sau_ g (47)
r r

A A R

2, .8,
od

90

. - ettt
Y, * "‘l'l LI 1
M ,I 2 Ay I A N




RS TRl A o d e Bl A i~ an B MR i~ G e ol i~ b Sad i~ o A i h-atiih - andh nS i adey ik - shilc odh-MAC abd A~ dilir s A st - niah BAIA - ok arth SR -siel“nibhr i A~ ol adhl -

Which simplifies to the form

|
o
+
™M

5]

=
]
wn

= (48)

where S' = rS§S (49)

Equation (48) is in a form similar to the one dimensional
diffusion equation (chapter III, equation (26)) and can be
solved using the same basic code, with the modification to
the source term given by equation (49). Hence each group in
the multigroup diffusion problem is solved in terms of the
variable u, and the fluence at each node is obtained by

applying equation (46).
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Appendix D: The Analytical Solution -

® (Simple Case) L
2
In order to verify the radiation transport code, it is J
@ necessary to look at a simple case of the diffusion equation, ;—
and obtain a solution analytically. Hence, a simple two :u
energy group problem will be considered, and the diffuse ,__
o solution for the lower energy group will be solved. .\-,.
First, the homogeneous solution to equation (48) in .
appendix C must be found :
P A
p dlu gy 53 - o (50) \
dr2 '__::
.
The homogeneous solution follows quite easily, and by ~E
requiring the solution to remain finite with increasing ::{
Y
) range, r, it reduces to one term. ;
23
u (r) = C exp(—(za/D)%I') (51) *”:
X %
Next, the particular solution to equation (48) is determined
\ by first assigning u as
‘. »
‘ Lt = At A (52) =
E 2
i.- By differentiating equation (52) twice with respect to r and N
substituting back into equation (48) from appendix C, the
92
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result becomes

ZaAlr + zaAO = rS$ (53)

By equating the like terms of equation (53), the coefficients

are determined as follows

AO =0 (54)
Ay = s/z2@ (55)

The final solution becomes
u(r) = C exp(-(z®/D) ¥ry + /2% ¢ (56)

To determine the constant C, the first boundary must be
applied. Since there is only virgin flux at the origin of
the source, the diffuse solution must be zero when r is zero,

and hence

u(0) =C =0 (57)

Equation (56) now reduces to one term, and when it is solved
for the fluence by applying equation (46) (appendix C), it

becomes

F(r) = s(r)/z® (58)
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The initial intensity levels assigned to these two
energy groups were 0.40 counts per photon (group 1) and 0.35
counts per photon (group 2). The values of the diffusion
constant and macroscopic absorption cross section were
2.6637E+4 cm, 5.8079E-5/cm, 2.6232E+4 cm and 5.5647E-5/cm, in
that order. The results for the diffuse solution using the
analytical solution was 4.0lE-11 counts per photon per square
cm, and the transport code solution for only one mesh space

was 8.65E-12 counts per photon per square cm,
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Appendix E: Transport Code Listing

This appendix provides a listing of the radiation
transport code discussed in chapter III. The subroutines are
discussed one at a time, along with a brief description of
the variables. Variables which are discussed in the main
program will not be discussed a second time in each
subroutine.

When running this code, it is very important to make
dimensional changes to two of the variables, in order to
maintain the positive definite nature of the arrays which are
processed by the IMSL library subroutines. These include the
S array in the main program and the S and the MG arrays in
subroutine diff, The S array must be dimensioned as a NV *
3 matrix and MG as a NV # 4 matrix. Here NV stands for the
number of variables, and is equal to two times the number of
nodes, As listed, the program is set up for 100 mesh spaces,
or 202 variables (the flux and current at each node). If the
number of mesh spaces is changed without redimensioning these
two arrays accordingly, the IMSL subroutines will return
error messages.

Another important note concerning this program concerns
the lines containing a "D" where a comment code "C" would
normally go. These lines are debugging lines, and are
compiled on the Harris 800 when the debug mode is used,
otherwise they are treated as comment lines (not compiled).

This code is written in Fortran 77, and extensive use
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was made of references (1) and (9), as well as Dr. Donn

Shankland's knowledge

of the operatiag system. The IMSL

documentation was also extremely helpful for solving the

matrix equations in this program.

Program Description

Main Program.

The main program

is responsible for calling all the

subroutines and finally printing out the final solution for

the fluence at each node.

List of Variables.

R - stores the ranges from the source,

XTR - stores the transpbrt cross sections,

XR - stores the removal cross sections,

XT - stores the total cross sections,

XS - stores the scattering cross sections,

SG - stores one group's removal cross sections,

Cc - stores the boundary conditions cl,c2,d1,d2,

B - stores the boundary conditions el,e2

DD - stores the diffusion constants for one group,
S - stores the source matrix from Simpson's approx.,

c1,c2,D1,D2 - boundary conditions,

E1,E2 - boundary

conditions,

T - stores values of 1, 2#PI & 4*PI,

MAXN - maximum number of nodes,
MAXMAT - maximum number of materials (1l in this prob.),
N - number of nodes,
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K - geometry factor,
MAT - stores the material number,
NMAT - number of materials,

NC - IMSL subroutine variable,
I - integer counter,

NV - number of variables,

MAXG - number of groups used,

Subroutine GDATA.

This subroutine retrieves the basic data for setting up
the appropriate mesh spacing.

List of Variables.

A, AA, B, BB, C - position varibles,

NR - number of regions,

MN - material number,

NS - number of mesh spaces per region,
M - position variable,

Subroutine MDATA.

This subroutine retrieves data on each different group
and each different material.

List of Variables.

-

I, J, K - integer counters.

FERAR]
LI

Subroutine BDATA.

e

This subroutine retrieves the boundary data and sets up
the C matrix.

Subroutine BOUNDR,

This subroutine computes the boundary condition matrix,

C, in the case of the radiation transport problem, due to the
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energy dependent boundary conditions.

Subroutine DIRECT,

This subroutine calculates the direct fluence at the
nodal points and at the midpoints of each mesh interval,
values which are modified in subroutine TERM and ultimately
used in the Simpson's approximation,

List of Variables,

GROUP - the current group number,
IA - the current interval number (mesh space),
GAMMA - stores the initial intensity levels of

all the groups,

DPHI - stores the direct fluence at each node,
MPHI - stores the direct fluence at each

half node,
MULT - temporary storage variable,

MIDPT - the midpoint of the interval.

Subroutine TERM.

This subroutine modifies the direct fluences into the
source term used by the Simpson's approximation,

List of Variables.

IH - group counter for downscatter calculations,
MSOURCE - source term at mid-interval,
DR - distance from the left node to the

midpoint of the current interval,

Subroutine DIFF.

This subroutine sets up and solves the matrix equation

derived in chapter III. 1In arriving at the solution for the
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C

C salve for lambdas

C

0 PRINT*,'!

i} PRINT*, 'entering LEQT1P to solve for lamdas'
CALL LEQTIP (Q,1,2,R,2,ID,D1,02,IR)

0 PRINT*,' solution follows (lamdas):'

D PRINT#,' LAMDA 1 =',R(1)

D PRINT#,' LAMDA 2 =',R(2)

C

C add boundary terms to the free solution

C

D PRINT*,' entering SAXPY to add in boundary terms . . .'
D071 =1,2

CALL SAXPY (NV,R(I),5{1,I+1),1,5,1)
7 CONTINUE

D PRINT*,"!
D PRINT#,' the solution for the variable U follows'
D PRINT*,' (for fluence*r AND current*r)'
D PRINT#*,' (still in subroutine DIFF)'
D DO 500 IP = 1,NV
D PRINT*,5(IP,1),5(IP,2),5(IP,3)
DSO0  CONTINUE
C since the solution is in terms of the arbitrary
C variable "U", which is equal to R * FLUENCE,
C we must now SOLVE for the scattered fluence by
C dividing "U" by R at each node and putting the
o solution back in the matrix "s".

DOBOOI = 1,N,2

IX =1~ (1/2 - 0.5)

XX(1) =1
0 PRINT*,'s(',I,',1) =',5(I,1)
D PRINT#, "XX(',IX,"') =',XX(IX)
S(1,1) = S{I,1)/X%(IX)
D PRINT#*,S(I,1)

500 CONTINUE
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C -—rad
C solve the main matrix problem =!!j
¢ T
D PRINT*,'! S
D PRINT#*,' entering LEQIPB . . .' m
D PRINT*,'! e
CALL LEQTPB (MG,NV,3,NV,S,NV,3,I0GT,D1,02,IER) i
) PRINT#,'" -8
D PRINT#,' the solution for t0, t1 & t2 follows:' L
0 DO 138 IY = 1,NV =]
D PRINT*,S(IY,1),5(IY,2),5(IY,3) -
0138 CONTINUE ]
c o
C compute the small matrix ﬁ!%
c .
K=0 O
D PRINT®,'' e
D PRINT*,'entering VIPRFF imsl subroutire now...'
D PRINT*,"'
D PRINT#,'"
D PRINT*, 'the pre-VIPRFF C matrix follows:'
D D0 145 IT = 1,NV
h) PRINT*,C(IT,1),C(IT,2)
D145 CONTINUE
00200 I=1,2
CAL'. VIPRFF (C(1,I),S,NV,1,1,R(I))
h) PRINT®,'!
D PRINT®,'for i =',1I
D PRINT*,'R(',I,') =',R(I)
0 PRINT®,'B(',I,') =',B(I)
R(1) = B(I) - R(I)
D PRINT*,'B(I) - R(I) =',R(I)
D0 150 3 = 1,I
K =Ka+1
D PRINT®,*'
0 PRINT*,' entering VIPRFF again ...'
CALL VIPRFF(C(1,1),5(1,3+1),NV,1,1,G(K))
0 PRINT*,' for j=',J .
0 PRINT*,' and k =',K b
D PRINT*, ' a(',K, ") =",a(K) R
150 CONTINUE N
200 CONTINUE RS
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PR |
e %ty s

n

&)

.

+
B
P W

i

h e




AR TP I Bl § e Bl madh fend i b Send el Snat Sl e i St thies “Jhn A n ERA i R . At RN il S A Y O e R S . e N e R A

C
C compute the source term ~
c
[ '::
CCCCCCCCCCCCCCCCCCCCCCCeeeeCeecereceeeroecerereeeeereeeceeceeeeeceec
[ add in the downscatter contribution « . . C
({010t % 0 i 0 0 o 5 0 5 3 4 ¢ I I .
c N
DO 80 IH = 1, IG-1 o
CALL TERM(N,MAT,IG,IH,XX,XS,PHI,SOURCE, =
+ MPHI ,MIDPT,IA,MSOURC,XT) o
C return with "SOURCE" array values and compute oL
C the source matrix using Simpson's Approximation. =
C NOTE: downscattered sources are added in to the --‘
C inscattered source already present in the "S" array. “
SA = H * SOURCE(IA)/6 -
SB = H * MSOURC / 3 o
SC = H * SOURCE(IA+1)/6 Pt
S(K+1,1) = S(K+1,1) + SA + SB
S(K+2,1) = S(K+2,1) - .25%*H*SB/D ]

S(K+3,1) = S(K+3,1) + SB + SC
S(K+4,1) = S(K+4,1) + .25%H#*SB/D

80 CONTINUE e
c S
c insert boundary conditions _,.'
C

00 90 J=1,2 2
S(K+1,J3+1) = C(K+1,T)

S(K+2,J4+1) = C(K+2,J) e

90 CONTINUE =0
100 CONTINUE $
IA = NI + 1 .
K=TIA+IA -2

D0 125 J = 1,2 o
S(K+1,3+1) = C(K+1,3) 2
S(K+2,J+1) = C(K+2,J) iy

125 CONTINUE )
0 PRINT*,""
D PRINT#,' the MG matrix follows (banded form) . . .' N
) D0 135 1Z = 1,\WV e
0 PRINT*,MG(1Z,1),MG(IZ,2),MG(1Z,3),MG(IZ,4) e
0135 CONTINUE S
D PRINT®*,'' St
D PRINT#, 'the source matrix follows (s,c1,c2) « « o' 9
D DO 136 IZ = 1,WV
D PRINT*,5(12,1),5(1Z,2),5(1Z,3) Rt
0136  CONTINUE )
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) C -
C now, build each local matrix (for each interval) !3
C ~- -
NI = N-1 K
0 PRINT*,'N =',N -]
D PRINT#,'NV =',NV hy
) D PRINT*,'NI =',NI L
00 100 IA = 1,NI Prij
D=0D(IA) D
H=XX(IA+1) ~ XX{IA) "
D PRINT*,'for interval number',IA .:'_-:
0 PRINT#,' D = ',D T
D PRINT*," XX(IA+1) =',XX(IA+1) ]
D PRINT#," XX(IA) = ',XX(IA) P
D PRINT*,' H = ',H o
D PRINT*,'SG(IA) =',SG(IA) ]
D PRINT#, ' B
ML(1,1,IA)=1.2%D/H + 13.%SG(IA)*H/35. =
ML(2,1,IA)=-0.1 - 11.%GG(IA)*H*H/(210.*D) ]
ML(3,1,IA)=-1.2%D/H + 9.%SG(IA)*H/70. !!1
ML(4,1,IA)=-0.1 + 13.#SG(IA)*H*H/(420.%D) -
ML(2,2,IA)=(D/(30.#H)+H*SG(IA)/420.) * (2.%H/D)*x*2 R
NL(3’2’IA)=—ML(411’IA) ,:':_'
ML(4,2,IR)=-(D/(30.%H)+H*SG(IA)/140.) * (H/D)**2 s
ML(3,3,IA)=ML(1,1,IA) iﬂ]
ML(4,3,IA)=-(2,1,IA) |_l_ﬂ
ML(4,4,IA)=M_(2,2,IA) ~y
c now fill in the rest of the elements NS
DO3I=1,3 -2
IP=14+1 9
D0 20 J = IP,4 >
m(I,3,IA) = mL(J,I,IA)
20 CONTINUE
30 CONTINUE
0 PRINT®,'! }i-
D PRINT*,' echo the local matrix now . « ' >
D 00 35 IZ = 1,4 iy
D PRINT®*,M.(1Z,1,IA),M.(1Z,2,IA),M (1Z,3,IA),M (1Z,4,IA) R
035 CONTINUE o
c o
C assemble the global matrix now :t-:*
-
C -
K=IA+IA-2 »
DOSOI =1,4 .
00 40 J = 1,1 Y
MG(K+I,4+3-1)=MG(K+I,4+3-1)+M (I,3,IA) b
4G CONTINUE =
50 CONTINUE .
D PRINT*,'"
D PRINT®,' - ' X
D PRINT*,' GROUP',IG,' INTERVAL',IA :
0 PRINT*,"
0 PRINT*,'!
.:"".‘ b Y e
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SUBROUTINE DIFF

3% 3638 38 36 36 38 36 3¢ 36 3 331 7 36 3 36 36 3 36 36 36 36 38 3¢ 36 38 3¢ 3 3 36 34 36 36 3 3 36 3036 36 7636 36 3 30 I3 36 3630 36 6 38 36 3 3 3 336 3¢ 36 38 36 36 34 6 36 36 36 48 34 36 3¢

#*

oo 0O0Ooco0o0O000O0O0o00000n

O o o0 o

D10

SUBROUTINE DIFF(S,C,B,XX,D0,SG,NV,N,NG,XS,XT,MAT,IG,T)

INTEGER NV,N,NI,IG,IH,INSCATTER,NG,MAT(*),K,IA

REAL D,DD(*),H,SG(*),5A,5B,SC,S50URCE(101),T(3)

+ ,01,02,MG(22,4),M.(4,4,100),5(22,3),C(202,2)

REAL B(*),R(2),Q(3),XX(101),X5(5,21,21),DPHI(101),XT(5,21)
+  ,MPHI,MIDPT,MSOURC,PHI(18,101)

This subroutine uses the FINITE ELEMENTS METHOD to
solve the one-dimensional diffusion equation.

MA = 1/(30%H) * | 36

-3H/D (2H/D)**2

-36 3H/D 36

-3H/D  -(H/D)*%2  3H/D  (2H/D)**2
MB = H/420 * 156

-22H/D  (2H/D)#%2

54 ~13H/D 156

13H/D -3(H/D)**2 22H/D (2H/D)#**2

notes these matrices come from the quadratic terms of the
penalty function and are symmetric (hence the blank
entrees in the upper portions).

NV =2 *N
PRINT#*,'echo of C matrix within subroutine diff...'
PRINT®,''
DO 10 I = 1,NV
PRINT*,C(I,1),C(I,2)

CONTINUE

ZERO THE ARRAYS
D03 I =1,N
DD 43J=1,3

ZERO OUT THE GOBAL MATRIX
mG(I,3) = 0.0

ZERO OUT THE SOURCE MATRIX
5(1,3) = 0.0
CONTINUE

ZERO OUT THE LAST COLUMN OF THE GLOBAL MATRIX
MG(I,4) = 0.0
CONTINUE
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SUBROUTINE TERM *

36363 36 38 36 36 3 36 38 3¢ 3 38 31 3 36 38 36 3¢ 34 36 36 36 3¢ 36 34 3 336 3 36 3¢ 36 36 3¢ 36 3¢ 3¢ 3 36 3 36 I 38 6 38 36 36 I 96 3 36 3 3¢ 3¢ 36 3¢ 36 36 36 38 3436 36 36 3 3¢ 3% 36 3 I 3 3

oo ocoOooO0O0o0o0n

200

00O oo

oM oo

o o

+

SUBROUTINE TERM (N,MAT,IG,IH,R,XS,PHI,SOURCE,

+ MPHI,MIDPT,IA,MSOURC,XT)

REAL R{101),X5(5,21,21),PHI(18,101),SOURCE(*),MPHI,MIDPT,
MSOURC,DR,XT(5,21)
INTEGER N,MAT(*),IG,IH,IA
this subroutine computes the source term which is used
in the Simpson's Rule Approximation for the integrand
term:  -2FSprime.
NOTE: since Sprime = rS, the source term becomes:
XS * R * DPHI

PRINT*,'!
PRINT*,'in subroutine TERM ..'
PRINT®,'!
PRINT*,'IG =',IG,'IH =',IH
DO 200 T = 1,N-1
SOURCE(I) = XS(MAT(I),IG,IH)*PHI{IH,I)*R(I)

CONTINUE
SOURCE(N) = XS(MAT(N-1),IG,IH)*PHI(IH,N)*R(N)
PRINT*,'(IG STILL ',IG,') IH =',IH

PRINT#*,'XS(IG,IM) =',XS(MAT(N-1),IG,IH)
now calculate the 4(pi)r**2 fluence at the left side of
this interval . . «
MIDPT = 0.5 * (R(IA) + R(IA+1))
MPHI = 4 * 3,1415926 * (R(IA)**2) * PHI(IM,IA)
DR = MIDPT - R(IA)
PRINT*,'R(IA) =',R(IA),' MIDPT =',MIDPT,' DR =',OR
PRINT*,' IA =',IA,’' & IA+1 =',IA+1
calculate the fluence at mid-interval using
exponential loss by absorption ONLY (sigma removal).
MPHI = MPHI * EXP(-XT(MAT(IA),IH)*OR) / (4*3.141583*MIDPT**2)
MSOURC = XS(MAT(IA),IG,IH) * MPHI * MIDPT
PRINT*,' MSOURC =',MSOURC
PRINT*,' SOURCE(IA) =',SOURCE(IA)
PRINT*,' SOURCE(IA+1) =',SOURCE(IA+1)
END
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® [
C assign the geometry factor "K" in next line.
C
K =2
MULT = GAMMA(GROUP)
C iterate over all the nodes
DO 100 I = 1,N
® IF (I.EQ.1) THEN
R(I) = 1
C i.e., set the left boundary = 1 cm
DPHI(1) = MULT/(T(K)*R(1)**K)
ELSE
H(I) = R(I) - R(I-1)
® MULT = MULTHEXP(-XT(MAT(I-1),GROUP)*H(I))
OPHI(I) = MULT/(T(K)*R(I)**K)
ENDIF
100 CONTINUE
C ends loop over all nodes
C
v C now calculate the third direct fluence value, that is,
C the value in the middle of the interval of interest.
C
MIDPT = 0.5 * (R(IA) + R(IA+1)) -
MPHI = GAMMA(GROUP) * EXP(-XT(MAT(IA),GROUP)*MIDPT)
+ / (T(K) * MIDPT#**K)
L D PRINT*,'DPHI at IA =',IA,' is =',DPHI(IA)
D PRINT*,'DPHI at IA+1 =',IA+1,' is =',DPHI(IA+1) .
D PRINT*,'MPHI =',MPHI D
D PRINT*, 'MIDPOINT =',MIDPT R
END ;':
. .
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. SEFE 36 336 36 36 38 36 38 36 36 36 3 36 3£ 6 3636 36 3 331 36 36 36 36 38 6 3 36 36 3 3 36 3636 36 36 36 34 36 30 3636 36 36 38 336 36 36 36 34 38 36 36 36 36 36 36 36 9 36 36 3 36 36 3 96 3¢
* SUBROUTINE DIRECT *
$ 34 3 36 96 3 36 36 36 36 36 36 38 34 36 30 30 3 36 36 36 36 3 36 36 36 3 3 3 36 36 30 36 3 36 36 36 36 36 36 36 34 3 3 38 36 36 36 3 36 6 6 36 3 38 3 36 36 36 36 36 4 34 36 36 3 3 4 3 3¢

SUBROUTINE DIRECT (N,T,R,MAT,XT,DPHI,GROUP,IA,MPHI,MIDPT)
C

P C this subroutine computes the direct fluence at each
C node for each group, filling the "DPHI" array.

c
REAL R(*),XT(5,21),0PHI(101),GAMMA(18),T(3),MULT,H(101)
+ HMPHI,MIDPT
INTEGER N,K,MAT(*),GROUP,IA
® ] PRINT*,'!
D PRINT*,' in subroutine DIRECT . . .'
D PRINT#,'!
D PRINT*, '"GROUP =',GROUP
GAMMA(1) = 0.0
GAMMA(2) = 0.0
GAMMA(3) = 0.0
v =
GAMMA(4) = 0.0
GAMMA(S) = O
GAMMA(E) = 0.33
GAMMA(7) = 0.13
GAMMA(B) = 0.05
GAMMA(9) = 0.10
L GAMMA(10) = 0.25
GAMMA(11) = 0.01
GAMMA(12) = 0.03
GAMMA(13) = 0.03
GAMMA(14) = 0.064
GAMMA(15) = O
® GAMMA(16) = 0.03
GAMMA(17) = O
GAMMA(18) = O
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* SUBROUTINE BOUNDR *
3636 38 36 36 36 36 36 36 3¢ 3 34 334 3 36 3136 36 3 T 3 36 36 36 36 3 3 3 6 3 T 36 36 36 3 36 36 6 3 36 36 3 36 2 3638 3¢ 3¢ 6 36 3 36 3 W 3 36 3 36 3 3¢ 3 96 34 3 % %
SUBROUTINE BOUNDR(C,C1,C2,01,02,00,5G,N,NV)
REAL C(202,2),C1,C2,01,02,0D(*),SG(*)
INTEGER N, NV

C
C This subroutine sets up the C-matrix for each energy
C group & passes it back to the main program. This
C subroutine is necessary in the radiation transport
C problem ONLY when the boundary conditions require terms
C that are energy dependent.
C
D2 = (DD(N-1)*SG(N-1))*#0,5
D PRINT#*,''
] PRINT*,'N-1 =',N-1,'DD =',DD,'SG =',SC
C(1,1) = C1
C(2,1) = D?
C(NV-1,2) =
C(NV,2) =

0 PRINT*,'echo of C-matrix in subroutinme BOUNDR:'

v,

D DO100I =1,NV e
) PRINT*,C(I,1),C(I,2) o
D100 CONTINUE 9
END -
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D100

SUBROUTINE BDATA *»

SUBROUTINE BDATA (MAXG,NG,NV,C1,C2,D1,D2,£1,E2,C)

this subroutine reads in boundary data and o
computes the boundary matrix. »

REAL E1(*),E2(*),C1,C2,01,D2,C(202,2) oy
INTEGER MAXG,NG,I,NV .
PRINT#,' entering BOATA subroutine « « « ' N
PRINT*, 'ENTER C1,C2,01,02 (AS SHOWN)' -
READ*,C1,C2,D1,D2 :
PRINT*, 'ENTER ONE VALUE OF E1 FOR EACH ENERGY GROUP' e
PRINT*, 'BEGIN WITH HIGHEST GROUP (#1), PUTTING EACH ENTRY'
PRINT*,'ON A SEPARATE LINE.' a
DO 80 I = 1,NG S

READ*,E1(I) R
CONTINUE -
PRINT*, 'NOW REPEAT FOR E2' .
D0 9 I = 1,NG D

READ*,E2(1) _ :
CONTINUE o

=
now construct the "C" matrix (boundary cond. matrix) E;

c(1,1) = C1 -
C(2,1) = D v
C(NV-1,2) = C2 ;
C(NV,2) = D2 e
PRINT*,'echo the C matrix in BDATA subroutine'
DO 100 I = 1,NV

PRINT*,C(I,1),C(I,2)
CONTINUE

END
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* SUBROUTINE MDATA *

336 3 36 36 36 36 36 36 36 36 34 38 3 96 36 3 36 36 J T 36 3838 36 36 36 36 96 H 3636 3 36 38 38 26 38 36 36 36 36 66 6 5 I 3836 6 3¢ I 36 6 T I 36 36 3 96 36 K 96 36 66 6 36 36 33 2

SUBROUTINE MDATA(MAXMAT,MAXG,NMAT ,NG,XTR,XT,XS,XR)

this subroutine reads in material data.

o

REAL XTR(S5,21),X7(5,21),xS(5,21,21),XR(5,21)
INTEGER NG,MAXMAT,MAXG,NMAT,I,J,K
D PRINT*,'!
PRINT#,' entering MDATA subroutine now . . .'
D PRINT*,'!
PRINT*, 'ENTER THE NUMBER OF DIFFERENT MATERIALS USED'
READ* ,NMAT
PRINT*,'ENTER THE TOTAL NUMBER OF ENERGY GROUPS'
READ*,NG
c read in cross sections begimning with transport and total
DO 20 I = 1,NMAT
D060 J = 1,NG
PRINT*, '"ENTER MATERIAL',I,', GROUP',J,' CROSS SECTIONS'
PRINT*,'sigma tr, sigma t: SEPARATE BY COMMAS.'
READ* ,XTR(I,J),XT(I,J)
[ now read in the scatter cross sections
PRINT*, 'NOW ENTER THE SCATTERING CROSS SECTIONS.'
PRINT*,'BEGIN WITH SCATTER FROM HIGHEST ENERGY GROUP'
PRINT*, 'AND STEP THROUGH GROUPS UNTIL WITHIN GROUP SCATTER'
PRINT*,'EX, 1->IG, 2->IG, eseses (IG-1)->IG, IG->IG'

o

DO 70K = 1,
READ*,XS(I,J,K)
70 CONTINUE
c compute the removal cross section from total and scatter :
XR(1,3) = XT(I,7) - xs(1,3,3) =
60 CONTINUE
20 CONTINUE .
MAXG = NG
END \
t
3
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SUBROUTINE GDATA

¥*

336 36 34 6 6 3436 30 3 3 3 3 3 36 36 36336 38 36 36 36 6 T 36 336 36 6 36 30 34 6 4 309636 636 36 36 3 38 38 36 36 34 6 36 3 3838 96 38 3¢ 36 36 336 36 38 36 3 36 36 36 36 36 38 6 o 334

10

50

SUBROUTINE GDATA (MAXN,MAXMAT,R,MAT,N,K)
REAL R(*)

REAL A,B,C

INTEGER NR,K,AA,MN,NS,BB,M,MAT(*),N,I

PRINT#,'ENTER THE NUMBER OF REGIONS'
READ#*,NR
PRINT*,'ENTER THE LEFT BOUNDARY LOCATION'
READ#*,A
PRINT*,'ENTER THE GEOMETRY TYPE, K=?'
READ#,K
AA=1
D0SQI=1,NR
PRINT#,'ENTER THE RIGHT HAND BOUNDARY FOR REGION ',I
READ*,B8
PRINT#*,'ENTER THE # OF MESH SPACES FOR THIS REGION'
READ*,NS
PRINT*,'ENTER THE MATERIAL NUMBER'
READ*,MN :
C = (B-R)/NS
BB = AR + NS
00 5 M = AA,BB
IF (M.EQ.AR) THEN
R(M)=A
ELSE
R(M) =R +C
A = R(M)
ENDIF
CONTINUE
00 10 M = AR, BB-1
MAT(M) = MN
CONTINUE
AA = BB
N =88
MAXN=N
MAXMAT = BB-1
CONTINUE
END
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* MULTI-GROUP DIFFUSION EQUATION CODE * ™
* (WITH FINITE ELEMENT METHOD) * -
# * :.:
# DATE WRITTEN: 28 OCT 1984 # I
#* * :J
* AUTHOR: L. WAYNE BRASURE * -~
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REAL R(101),XTR(5,21),XR(5,21),XT(5,21),X5’%,21,21),5G6(100)

REAL C€(202,2),B(2),DD(100),5(22,3) .
REAL C1,C2,D1,D2,E1(21),E2(21),T(3) ~
INTEGER MAXN,MAXMAT,N,K,MAT(100),MMAT,NC, I,NV,NG,MAXG A
T(0) =1 ii
T(1) = 6.2832 e
T(2) = 12.5664 N
MAXG = 21 o
D PRINT*,'entering data entry phase of program ...' o
D PRINT#,"'" o
CALL GDATA (MAXN,MAXMAT,R,MAT,N,K) b
NV =N *2 !!

CALL MDATA(MAXMAT,MAXG,NMAT ,NG,XTR,XT,XS,XR)
CALL BDATA(MAXG,NG,NV,C1,C2,D1,D2,E1,E2,C)

D PRINT*,"!

) PRINT*,'echo of C matrix within main program . . .'
0 PRINT*,'" i
D 0010 I =1, NV 5
0 PRINT*,C(I,1),C(I,2) -
D10 CONTINUE o
DO 999 IG=1,NG <
00 S0 I =1, N-1 o
SG(I) = XR(MAT(I),IG) -
0D(I) = 1./(3.*XTR(MAT(I),IG)) »
D PRINT*,'echo SG(',I,') =',SG(I) L
D PRINT*, 'echo DO(',I,') =',DD(I) e
50 CONTINUE -
B(1) = E1(IG) o
B(2) = E2(IC) e
CALL BOUNDR(C,C1,C2,D1,D2,0D,5G,N,NV) Ig
CALL DIFF(s,C,B,R,00,56,NV,N,NG,XS,XR,MAT,IG,T) ~
PRINT*,"'! v
PRINT*,"" =
PRINT*,' THE SOLUTION FOLLOWS === GROUP',IG N
PRINT#*,'! Y
PRINT®,"" »
0 PRINT*,S(NV-1,1) -
00 60 I = 1,NV,2 -
IX =1 - (I/2 - 0.5) K
PRINT*,' at R =',R(IX),'cm, F =',5(I,1) o
60 CONTINUE : L
C now end the iteration over all energy groups . . . §i
999 CONTINUE o
END e
100 ﬂ}
.
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fluxes and currents at each node, it sets up the local and :

.

. global matrices for each group (one at a time), performs the !
Simpson's approximation, and solves the series of matrix

equations (using IMSL subroutines) in order to arrive at the

hd solution for each group. Each group calculation is performed ;
separately, beginning with the highest energy group, group

one., The solution is stored in the S matrix, printed out, .

® and then the subroutine moves on to the next lower group. i
List of Variables. ‘

NI - the number of mesh intervals,

v INSCATTER - 1 if doing an inscatter calculation, i
D - diffusion constant in current interval,

H - width of current interval,

v SA, SB, SC - variables used in Simpson's approx., E
SOURCE - stores the source term used in Simpson's ;:j

approx., ;

o XX - stores the positions of each node, :
R, Q@ - variables used in solving linear equations g

in conjunction with IMSL subroutines. é

o :
-

. :
. :
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° c =
C we now have the FLUENCE due to scattering and Eg
C must add this to the direct fluence at each node. o
C L
c first, we must calculate the direct fluence for this :f
C energy group at each node. ’}
' C . .-\
CALL DIRECT(N,T,XX,MAT,XT,DPHI,IG,IA,MPHI,MIDPT) Ei
PRINT*," ' >
PRINT*,'! -
PRINT*,' Scattered Fluence for Group',IG,' is =',S(NV-1,1) l»
PRINT#,' & the Direct Fluence =',DPHI(N) R
° 00 700 I = 1,NV,2 e
IX = I -(I/2 -0.5) .
D PRINT*,'S(',I,',1) =',5(I,1) -
D PRINT*, 'DPHI(',IX,') =',DPHI(IX) o
S(I,1) = S(I,1) + DPHI(IX) -
D PRINT*,'s(',I,',1) =',5(I,1) o
. C put the solutions for this energy group into the :;
v c "PHI" array, to be used for the downscattered [ |
c contribution for the lower energy groups. 7:
PHI(IG,IX) = S(I,1)
D PRINT*,' for IX =',IX,' and IG =',IG
D PRINT*,' PHI(IG,IX) =',PHI(IG,IX),"' S(I,1) =',S(I,1) -
700 CONTINUE K
® c i
C return control ;u
C r
END ..
oy
[
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Appendix F: Generating Poisson and Multinomial

[ ]

e
e

Reference Values

This appendix briefly discusses the way in which the

© - i »
reference source spectra were arrived at for both the Poisson bl

and multinomial versions of the Bayes' theorem analysis. }:;-

s

Both methods use the numbers generated by the "channel =

® percentage converting program" which is listed in this
appendix, This program converts the raw transport data
contained in tables III-1 through III-6 into a form
A acceptable to the Bayes' theorem analysis codes discussed in
appendix H. -
° Program Algorithm and Use i
For each of the three sources at each of the ranges
given, the program inputs the number of counts per photon in \
e each channel. The program ~utput includes the total counts :.:
per photon for the given source as well as a listing of the :)':
proportion of counts in each channel (the sum of all channels '-\,
153 being unity). :i,
The total counts per photon value is used to determine
the total number of counts for each source at any given —:
v distance. For instance, if at a distance of 50 meters, "'.“‘
2
measurements of equal time (Poisson) or of equal counts :%
S
(multinomial) yield 10,000 counts (assigned arbitrarily), \
v then the number of counts at all other ranges can be S*
determined for all sources. For source A at 100 meters, the t_;,
o
114 s
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total counts per photon (all channels) of source A is divided
by the total counts per photon (all channels) of source A at
50 meters, and multiplied by the number of counts at 50
meters. This yields the folowing: 9.12E-10/3.16E-9 * 10000 =
2816.7. So that 2816.7 counts will be obtained (2817 for the
multinomial analysis). The reference sources will be
constructed from this type of data, as discussed in the next

two sections.

Poisson Reference Sources

The first step in the process is to assign a level of
counts at the 50 meter range. Then, using the method
discussed above, the number §f counts for all three sovrces
at each range is calculated. Next, using the proportion of
counts in each channel, the number of counts in each channel
is determined. This results in three reference sources at

each range.

Multinomial Reference Sources

To obtain the multinomial reference sources, the total
number of counts for each source at each range is determined
in the same manner as above. The reference sources at each
range consist simply of the proportions in each channel

(recall the form of the multinomial distribution).

Program Output
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The output from this program has been surpressed, since
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it follows readily from tables III-1 through III-6.

4,

R

4

List of Variables ;b
integer: fﬂ

lc

COUNTS = counts/photon in each channel,

.'.

i e

N

source number (1-3),

NN scientific notation subroutine variable,
SUM = total counts/photon (all channels),

real:

XX = scientific notation subroutine variable. N
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10

20

30

35

40

50

55

60

70

80

85

90

100
110
120
130
140
150
160
170
175
180
185
190
200
210
220
225
230
235
240
250
253
255
260
270
275
280
290
300
310
320

T
.t 0 o

[
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REM -
REM  ++4++++++++++44+4 4444444444544+ 44444444+

REM +

REM + CHANNEL % CONVERTING PROGRAM +

REM + By L. Wayne Brasure +

REM + December 1984 +

REM + +

REM  +444+++++4+++ttttttttttrdtibttttdssddtss

REM

OIM COUNTS(18)

INPUT " Enter the source number =>";N

INPUT " Enter the range (in meters) =>";RANGE

PRINT " Enter the counts per photon for each channel indicated :"
sum = 0

FOR I =1 70 18

PRINT " Channel Number ";I3" =>"

INPUT COUNTS(I)
SUM = SUM + COUNTS(I)

NEXT I

PRINT "For Source Number ";N;", at R = ";RANGE;" meters:"

PRINT ;.
PRINT " total counts per photon ="3;SUM “ ol
PRINT ' 5,
PRINT " (channel breakdown follows)" o
PRINT i~
PRINT " CHANNEL NUMBER PERCENT OF TOTAL COUNTS"

PRINT " "

PRINT "

NN =4

REM 4+ print out the table now . . .

FORI =1 70 18

COUNTS(I) = COUNTS(I) / Sum

PRINT " "

XX = I: GOSUB 2100: PRINT " "
XX = COUNTS(I)

GOsuB 2100

PRINT

NEXT I

PRINT

INPUT " Care for another run? Enter [1] for yes =>";ANS
IF (ANS = 1) GOTO 85

END

_ e e e e e e e
."-' ."'( " '-“- . ".'h': Tat ."'.‘ e ) '-P".' ol '.v‘-'.' -.‘\ L e L T A T
CHRIRVERA W 55 SEITIVIL S SRE T YOS AL SIS TR R VR TRV Y S LS Y Y V)



LRAE She Bt Bni B Bast SnSl BaS Eal Nl et G B Sl S i1 LaadiE i B S in st die oo 2 G A dh B b Bl en s S a0 ot Aclli- sl abd aed slnt ath-amubs niek b4 a4 el - allh* i “siiE st hd - gial* uhi-adaitaliare St i S i o

o
2100 Rem
2110 REM B LTI TS
2120 REM + SCIENTIFIC NOTATION SUBROUTINE +
2180 REM B S T R e S S
. 2200 REM
() 2210 REM

2220 IF NN < O OR NN > B THEN PRINT "RANGE ERR";: RETURN
2230 EX = O: IF XX = O THEN MT$ = "0.": GOTO 2250
2240 MT = VAL ( STR$ ( ABS (XX))): GOSUB 2260: IF NN < 8 THEN MT = MT + .
5 *10 * (- NN): GOSUB 2260
2250 PRINT MID$ ("+-",(XX < 0) + 1,1); LEFT$ (MT$ + "ODOOODDD",NN + 2);"
P E"; MID$ ("+-",(EX < 0) + 1,1); RIGHT$ ("0" + STR$ ( ABS (EX)),2);: RETURN
2260 IF MT > = 10 THEN MT = MT / 10:EX = EX + 1: GOTO 2260
2270 IF MT < 1 THEN MT = MT * 10:EX = EX - 1: GOTQ 2270
2280 MT$ = STR$ (MT): IF MID$ (MT$,2,1) < > "." THEN MT$ = mT$ + "."
2290 RETURN
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Appendix G: Generating Measured Source Spectra o
- N
® c@.
This appendix will address the method of generating the ::".‘
4
measured source spectra during the analysis section of the ;:..:'.'_"-
® =
problem, The method will be discussed separately for each of F;.
b
the three types of statistical distributions used. P
DS
it
PY Poisson Random Number Generator ref. (11) & (16) e
Algorithm Description., ‘
The Poisson distribution inputs the reference sources in
v the form of number of counts in each channel (units =
counts), unlike the multinomial distribution format. One of
the three reference sources is selected as the source which o
- is to be "measured," and the measured source array is toe
initially assigned as this particular reference source. oj'-:.
RN
-
The Poisson random number subroutine first generates a TN
oy
° random number between between O and 1 (inclusive) and assigns ST
the value to the variable NUM. An integer is incremented, ;.-\.
beginning at 1, and is stored in the variable N. The ::j.\.:“
RS
probability of obtaining this number N is calculated using G
™) .
the Poisson distribution with the number of reference counts y
in the channel serving as the mean. The probability is next
compared with the random number, and the integer N is o
- '—6
increased until the probability is greater than the random
e
number, NUM. This process is repeated for all 18 channels. IR
List of Variables. =
-‘ o
integer:
‘.:'
:\':\
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IG = channel counter,
N = number of measured counts,
U = number of counts,
real:
MPHI(18) = measured source array (ends up an integer),
NUM = random number variable,
P = probability variable,
T = probability variable,
Y = number of reference counts variable.

Gaussian Random Number Generator ref. (16)

Algorithm Description.

The Gaussian random number generator begins in the same
manner as does the Poisson random number generator, with the
MPHI array initially equal to the chosen reference source.

for each channel twelve random

Next, of the measured source,

numbers are generated, since the uniform random number
generator approximates the Gaussian distribution with this
many repetitions (16), Each time a random number is

generated, it is added to the number of counts in the given

channel less 6. After all the numbers have been generated,
the resultant real number of counts is rounded to an integer
number of counts.

List of Variables.

integer:
IG = channel counter,

IMPHI(18) = final measured source array,
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real:
L
MPHI(18) = initial measured source array, _
X = random number variable, 53
Y = reference counts in a channel minus 6. gﬂ
- -
Multinomial Random Number Generator ref. (16) C:

LR IR

ey
o J! 5,
s &

Algorithm Description.

Unlike the Poisson and Gaussian distributions, the

multinomial distribution subroutine inputs the reference

. PLEN
I. )

- "t S

sources as fractions of counts in each channel (units = -3

et counts/photon). To generate a measured spectrum, one of the !&
reference sources is selected as before. The fractions in ig

each channel are converted iﬁto a cumulative distribution, so Sé
g that the last channel in the MPHI array will contain a value E4
of 1. ﬁﬁ

\!

The multinomial random number generator then assigns ;k

» each one of the total counts available to one of the channels

in the measured source array as follows. First, a random o

number between O and 1 is generated, which is then compared g:

L with the cumulative probability in each channel of the MPHI -
array. When the random number is less than the cumulative E?

probability in one of the channels, the count is added to E?

. that particular channel. This process continues until all =
the available counts have been depleted, leaving a new ;g

measured source spectrum, ;i

Y List of Variables. o
integer: $}
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I = total count incrementor,
’ IG = channel number counter,
MPHI(18) = measure source array,
NC(18) = counting array,
. SUM = total number of counts available,
T = channel number counter,
real:
' X = random number variable,

Subroutine Listings.

The random number generators are listed with the main

analysis programs in appendix H.
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Appendix H: Analysis Code Listings

This appendix describes and lists the three codes used
to generate the measured source spectra and perform the
Bayes' theorem analysis. There is one code for each of the
statistical distributions used: Poisson, Gaussian and
multinomial. The first code listed is the Poisson version,
and will be listed in its entirety. To obtain the Gaussian
code, two subroutines need to be replaced: the RANDOM

subroutine and the POISSON subroutine. Subroutine RANDOM was

v

’
Lot Sy

discussed in appendix F, and will not be discussed further.

The listing of the two new subroutines (RANDOM and GAUSSIAN)

~

begins on page 132, Similarly, in the multinomial code, only
those subroutines which are different from the Poisson code

will be listed and described. The multinomial listing begins

on page 133.

All analysis codes were written in BASIC to run on the

~ -
"
',

Lo

Syt

Apple II series of computers, and minor modifications will

DR
"yt

translate them into forms which can be run on almost any

+ 'y
’
Sz

z
v

microcomputer.

» 'f_'r

K

i N ey
IR ) I
U .\ ,

!.l

The Bayes' with Poisson Program

Main Program.

The main program inputs the number of channels (energy
groups) and the range at which the analysis will be

performed. It then calls the subroutines to solve for the

.o oo
T o
r v e 0t

b i

Bayes' posterior distribution, and prints out the results.

SO
TP
PAE AN
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The calculations are performed for one measured source at a

time at one range.

List of Variables,

RPHI - stores the three reference source spectra,
MPHI -~ stores the measured source spectrum,
NC - stores the number of counts in each channel

of the measured spectrum,
P - stores P(X|Ai) value of each source,
H$ - string array used in reading data
from data files,
RANGE - distance from the source at which the
anlysis is performed,
NG - the number of channéls in each source,
Pl1, P2, P3 - comprise the posterior distribution,
NN, XX - scientific notation variables,
ANS - integer value 1 continues program
execution.

Subroutine REFERENCE,

This subroutine retrieves the reference sources from

data files stored on disk. It feeds the data into the RPHI

array.

Subroutine MEASURED.,

This subroutine fills up the MPHI array with the values

from whichever source has been selected.

Subroutine RANDOM.

This subroutine generates the measured source spectrum

using the Poisson distribution. Refer to appendix F for

124




bl Al s lat el e Jhadey v e

details on this subroutine.

Subroutine BAYES.

This subroutine performs the Bayes' theorem analysis as
depicted in equation (30) of chapter 1IV.

List of Variables.

Al, A2, A3 - the assumed prior distribution
of the reference sources,
DENOM - stores the denominator in equation (30),
X1, X2, X3 - the values of P(X|Ai) returned by
subroutine POISSON.

Subroutine POISSON.

This subroutine calculates the values of P(X|Ai) using
the Poisson distribution, as discussed in chapter 1IV.

List of Variables.

S - reference source counter,

P - stores the final values of P(X|Ai),

IG - channel counter,

I - count level counter,

FT - temporary storage variable,
TERM - temporary storage variable.

Scientific Notation Subroutine.

This "canned" subroutine formats the output on the Apple
Ile computer and was written by John Baldwin of Erie,
Pennsylvania.

Data Retrieval Subroutine.

This subroutine retrieves text data from disk and

converts it into numerical data for use in the program.
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The Bayes' with Gaussian Program

Listing begins on page 132, R

Main Program,

The main program is identical to the Poisson version,

and hence, only the two new subroutines will be discussed.

Subroutine RANDOM,

This subroutine generates the measured source spectrum
using the Gaussian distribution. Refer to appendix F for
details on this subroutine,

Subroutine GAUSSIAN.

This subroutine calculates the values of P(X|Ai) using

the Gaussian distribution, as discussed in chapter IV,

The Bayes' with Multinomial Program

Listing begins on page 133.

Main Program.

The main program is basically the same as the Bayes'
with Poisson program, so once again, only the new subroutines
will be discussed.

Subroutine MEASURED.

The modification to this subroutine is to calculate the
cumulative probability in each channel of the array MPHI, in
order to calculate a measured spectrum using the multinomial
random number generator discussed in appendix F.

Subroutine RANDOM.

This subroutine generates the measured source spectrum
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This report shows that gamma ray spectra identification
using Bayes' Probability Theorem can be used to extend positive
identification ranges when compared with the method of photopeak
identification. In this study, Bayes' Theorem methodology extended
the range of positive identification a minimum of 50 meters in a low
count environment. These results are based on spectra generated using

the Finite Element Method in conjunction with Poisson counting statistics.,
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5550
5560
5565
5570
5580
5580
S600
5610
5620
5630
5700
5800
5810
5820
5830

REM  +++++ Now factor in the last few factorial terms:
TI =SUm - 71 -1

IF (TI < 1) GOTC 5600

FORI =TI TO 1 STEP -1
P(S) =P(S) * 1

NEXT I

NEXT S

X1 = P{1): PRINT "X1 = ";x1

X2 = P(2): PRINT "X2 = ";x2

X3 = P(3): PRINT "X3 = ";X3

RETURN

REM  +++++ a factorial fix-all begins here:
P(S) = P(S) * (Sum - TI)

TI =TI + 1
GOTO 5240




S000 REM
5010 REM O S S S S L L 0 L T TR S O Sy S S Oreny
S020 REM  + SUBROUTINE MULTINOMIAL +
S030 REM 44+ttt ttttitttttttttttdstrttssbtttetsss
5040 REM
5050 REM  +++++ Bubble sort the MPHI array, and place
5060 REM  +++++ the RPHI values in a corresponding order.
5062 SWITCH = 1
5063 IF (SWITCH = 0) GOTO 5080: REM (go to end statement).
5064 SWITCH = O: REM (0 if sort is complete)
5065 FOR I =2 TO NG
5066 IF (MPHI(I) < MPHI(I - 1)) OTO 3068
5067 GOTO 5078
5068 TEMP = MPHI(I)
5069 MPHI(I) = MPHI(I - 1)
5070 MPHI(I - 1) = TEMP
5071 REM  +++++ Now, the fractions must move WITH the MPHI
5072 FOR IV =1T03
5073 19 = RPHI(IV,I)
5074 RPHI(IV,I) = RPHI(IV,I - 1)
5075 RPHI(IV,I - 1) = 19
5076 NEXT IV
5077 SWITCH = 1
5078 NEXT I
5079 GOTO S063
5080 REM  +++++ Bubble sort is now complete . . .
5090 REM  +++++ Now, calcylate the P(X|source 1), etc.
5100 FORS =1T0 3
5150 P(S) = 1
5200 IM = MPHI(NG)
5210 JL = 1:TI =1
5220 P(5) = sum
5230 FOR I =1 10 Im
5240 IF (TI < SUM AND P(S) < 1E30) GOTO 5800
5250 IF ((MPHI(JL) - I) ¢ 0) GOTO S300
5260 GOTO 5500
5300 JL = JL + 1
5400 GOTO 5250
5500 FOR J = JL TO NG
5510 P(S) = P(S) * RPHI(s,J) / I
5520 NEXT J
5530 NEXT I
134
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"'. 3095

L4 2000
2010
2015
2020
2025
2030

2040
2080
2055

5 2057

2060

4 2065

2081
2085
2090
2100
2110

 © 3000

3010
3020
3030
3040
3041
v 3062
3060
3065
3070
3080
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REM

REM  +++++4+tt+++++++t+++t+tttttdtttet bttt

REM  + SUBROUTINE MEASURED +

REM +4+++t+tttt bbbttt bbbt bbb+

REM

PRINT : PRINT "MEASURED SOURCE SPECTRUM": PRINT "

"

PRINT " at ";RANGE;" cms.": PRINT

PRINT "enter the applicable ref. source (1,2,0r3) :™: PRINT
PRINT " (the cumulative prob. will be calculated)"
INPUT I

FOR IG = 1 TO NG
FRACT(IG) = PHI(I,IG)

MPHI(IG) = FRACT(IG)
IF (IG > 1) THEN MPHI(IG) = MPHI(IG) + MPHI(IG - 1)
PRINT " MPHI(";IG;") =";MPHI(IG);" FRACT(IG) = ";FRACT(IG)

NEXT IG

RETURN

REM

REM #4444+ ++4++t++bbbtttbtttbtdttttd+4444
REM + SUBROUTINE RANDOM +
REM 444444+ttt tttttbtttbtttttitbbbtittts
REM '

REM  +++++ initialize the counter array:
FOR T = 1 TO 18:NC(T) = O: NEXT T

FOR I =1 YO SUM

X = RND (1)

FOR IG = 1 TO NG
Y = X - MPHI(IG)

IF (Y < 0) THEN GOTO 3100

NEXT IG
NC(IG) = NC(IG) + 1

NEXT I

PRINT ¢ PRINT " Measured source spectrum follows:™: PRINT
FOR IB = 1 TO 3: PRINT CHR$ (7): NEXT IB
FOR IG = 1 TO NG

PRINT " channel # ";IGs" = ";NC(IG)
MPHI(IG) = NC(IG)

NEXT IG
3200 RETURN
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Lt
[ 3000 REM 0.
3010 REM 444+ttt ttttdtttrstrrdttsttsrttttrtts .
3020 REM + SUBROUTINE RANDOM +
3030 REM  ++++4++++tttttttittdtbttttrdtrbitri+t o
3040 REM o
3050 REM  +++++ This subroutine generates random numbers A
- 3060 REM +++++ FOLLOWING A GAUSSIAN DISTRIBUTION . . . l.:
' 3070 FOR IG =1 TO NG .';*"
| 3080 Y = MPHI(IG) - 6.0 : o
3090 FOR J =170 12 oy
‘ 3100 X = RND (1) ol
‘ 3200 Y = Y + X :—'3
@ 3210 NEXT ] ¥
1 3220 MPHI(IG) = ¥ A
3230 IF (MPHI(IG) < 0) THEN MPHI(IG) = O .~_,,
3240 NEXT IG o
3300 REM  +++++ Echo the measured source spectrum:" :“.
3310 PRINT CHR$ (7): PRINT CHR$ (7) o
@ 3320 PRINT "Measured source spectrum follows:™: PRINT o
3330 FOR IG = 1 TO NG -
3335 IMPHI(IG) = INT (MPHI(IG) + 0.5) S
3340 PRINT "channel ";IG;" = ";IMPHI(IG) et
3350 NEXT IG ' R
3360 PRINT N
® 3400 RETURN et
g 5000 REM s
F SO10 REM  ++4+4+tsddtttttdtitiitbbtbttitbdtttissst t:.-_
5020 REM + SUBROUTINE GAUSSIAN + ,,-.::
5030 REM  +4+tttttttbrttbtdbdttdtbbttttdtttetretts '('_:.'
5040 REM oy
_ 5100 FOR S =1T03 2
g 5110 P(S) = 1 . 4
5120 DUMMY = 1 N
5130 FOR IG = 1 TO NG : “3
S140 IF (IMPHI(IG) > O) GOTO 5200 :.::.'
5150 2T =1 e
) 5160 GOTO S300 o
- 5200 27 = IMPHI(IG) 9
5300 DUMMY = EXP ( - 0.5 * ({IMPHI(IG) - RPHI(S,IG)) / ZT * 0.5) * 2) / (
2 * 3.142593 * 7T) * 0.5 D
5310 P(S) = P(S) * oummy :j..::-‘
5320 NEXT IG e
5330 NEXT S ONG
L 5440 X1 = P(1): PRINT X1 = ";x1 .
5450 X2 = P(2): PRINT "X2 = ";x2 O
5460 X3 = P(3): PRINT "X3 = ";X3 RO
S500 RETURN R
_\_’_\
S
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REM
REM 444+ttt tttttbtdtrsttttbtstttsrtbbtttss
REM  + SUBROUTINE POISSON +
REM  +44+44+44++ 4444444444+t +++tbttbbbbittt
REM
FORS =1T03
P(S) =1
FT =1
oumMy = 1
FOR IG = 1 TO NG
REM  +++++ calculate factorial in numerator
FT =1
FOR I =1 TO MPHI(IG)
FT = FT # [
NEXT I
IF (RPHI(S,IG) > 0) GOTO 5300
TERM = 1
GOTO 5400
TERM = RPHI(S,IG) * MPHI(IG)
pummy = EXP ( - RPHI(S,IG)) * TERM / FT
P(S) = P(S) * oummy
NEXT IG
NEXT S
X1 = P(1)s PRINT "X1 = ";Xx1
X2 = P(2): PRINT "X2 = ";x2
X3 = P{3)s: PRINT "X3 = ";X3
RETURN
REM
REM B T S e m S L At
REM + SCIENTIFIC NOTATION SUBROUTINE +
REM E S s e s e e e
REM
REM
IF NN < 0 OR NN > 8 THEN PRINT "RANGE ERR";: RETURN
EX = Oz IF XX = O THEN MT$ = "0.": GOTO 6150
MT = VAL ( STR$ ( ABS (XX))): COSUB 6160: IF NN < 8 THEN MT = MT + .
S * 10 * ( - NN): GOSUB 6180
PRINT MID$ ("+-",(XX < 0) + 1,1); LEFT$ (MT$ + 00000000 ,NN + 2

E"; mID$ ("+-",(EX < 0) + 1,1); RIGHT$ ("0" + STR$ ( ABS (EX)),2)
> =10 THEN MT = MT / 10:EX = EX + 1: GOTO 6160

IF MT < 1 THEN MT = MT * 10:EX = EX - 1: GOTO 6170

STR$ (MT): IF MIDS (MT$,2,1) < > "." THEN MT$ = mT$ + "."

IF mT

m$ =
RETURN
REM
REM
REM
REM
GET C$
IF C$

F O s e s ST R e e L
+ DATA RETRIEVAL SUBROUTINE +

S R R T e L

= R$ THEN RETURN

7060 H$(IG) = HS(IG) + C$
7070 GOTO 7040
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3000 REM i
- 3010 REM  #+++++t4ttttttttttttttbbtbetttttsst+ -"‘j
3020 REM  + SUBROUTINE RANDOM + i.
3030 REM  ++++++++++tttdttbbtttrrtttitttststts '
3040 REM ]
30580 REM  +++++ This subroutine generates random numbers ’
; 3060 REM  +++++ following a Poisson distribution . . . o
e 3070 FOR IG = 1 TO NG -
3080 Y = MPHI(IG) ...
3100 IF (Y < = 0) GOTO 3300
3110 NUM = RND (1) v
3120 N = O )
30T = EXP ( -Y) e
) 40P =T ,
3150 REM  +++++ The DO UNTIL loop begins here: ;
3160 IF (NUM < = P) GOTO 3400 -
370N = N + 1 T
3190 U =N )
20T =T*Y /U i
3210P =P + T ot
3220 GOTO 3160
3300 REM  +++++ else, N = 0: M
310N = 0 -]
3400 REM  +++++ assign new value of MPHI(IG)
3410 MPHI(IG) = N o]
3500 NEXT IG
v 3510 PRINT CHR$ (7): PRINT CHR$ (7) )
3600 PRINT : PRINT " the measured spectrum follows:™: PRINT o
3610 FOR IG = 1 TO NG R
3620 PRINT " channel ";IG;" = ";MPHI(IG) -.:.
3630 NEXT IG 2
3700 RETURN .
® 4000 REM ,
4010 REM 4444444444 4444 4444444444444 3 4444444 ,
4020 REM  + SUBROUTINE BAYES + -
4030 REM #4444ttt tttt bbbttt rttttttrtritiibtts ':.".:
4040 REM o
4050 REM  +++++ First, assign the prior oistribution values '-:-“
[ 4060 REM  +++++ of the three reference sources . . . g
4070 A1 = 0.3333:A2 = 0.3333:A3 = 0.3333 S
4080 REM  +++4++ Call the statistics subroutine to :::-f-‘
4090 REM  +++++ determine the values of P(X|source 1), T
4100 REM  +++++ P (X|source 2), and P (X|source 3). s
4110 GOSUB S000
- 4120 REM  +++++ Calculate the denominator term of Bayes' Thm. ™)
4130 DENOM = X1 * A1 + X2 * A2 + X3 #* A3
4135 IF (DENOM = O) THEN PRINT " DENOM = O:": GOTO 4200 W
4140 REM  +++4+ calculate the likelihoods at the reference _'
4150 REM  +++++ range from the source. .a “
4155 FOR IB = 1 TO 3: PRINT CHR$ (7): NEXT IB -'.‘-"
- 4160 P1 = (X1 * A1) / DENOM ;
4165 P2 = (X2 * A2) / DENOM ]
4170 P3 = (X3 * A3) / DENOM S
4200 RETURN ~$
130 1
?_' v
,
N
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e
; - 1000 REM  ++4++++t+++ttttttttttrtttbtbsrttsttbttstd

1010 REM + SUBROUTINE REFERENCE +
1020 REM  +++++++t+tttttttrttttrtttttttdsttttbtitttss
1030 REM
1040 PRINT : PRINT "REFERENCE SOURCES": PRINT " "
1050 PRINT " at a range of ";RANGE;" cms"
1055 PRINT

hd 1056 PRINT " now acquiring necessary data . . ."
1057 D$ = CHRS (4): REM  +++++ (ESCAPE CHARACTER)
1058 R$ = CHR$ (13): REM  +++++ (RETURN CHARACTER)
1059 PRINT D$;"OPEN SOURCE DATA"
1060 PRINT D$;"READ SOURCE DATA"
1070 FORI =170 3

o 1080 REM  +++++ loop through all three sources
1090 FOR IG = 1 TO NG
1100 REM  +++++ loop through all the channels
1110 GOSuB 7000
1120 RPHI(I,IG) = VAL (H$(IG))

) 1130 H$(IG) = "

4 1140 NEXT IG

1150 NEXT I
1155 PRINT R$
1160 PRINT D$;"CLOSE SOURCE DATA"
1170 PRINT "€ECHO DATA . . ."
1180 PRINT ¢ FORI =170 3
v 1185 PRINT " SOURCE # ";I
1190 FOR IG = 1 TO NG
1200 PRINT ™ channel ";IGs" = ";RPHI(I,IG)
1210 NEXT IG

1220 NEXT I
1500 RETURN
o 2000 REM
2010 REM  +4+++++++++tttt++++44+4444 444444t +++++4
2015 REMm + SUBROUTINE MEASURED +
2020 REM  #+++4++++++tttbtitbtrttitdtdttbtstttitts
2025 REM
2030 PRINT : PRINT "MEASURED SOURCE SPECTRUM": PRINT "
‘g' _____ "

2040 PRINT " at ";RANGE;" cms.": PRINT

2050 PRINT "enter the applicable ref. source (1,2,0r3) :": PRINT
2055 PRINT " (the cumulative prob. will be calculated)"

2057 INPUT I .

2060 FOR IG = 1 TO NG

2065 FRACT(IG) = RPHI(I,IG)

2081 MPHI(IG) = FRACT(IG)
2090 PRINT " MPHI(";IG;") =";MPHI(IG)
2100 NEXT IG
2110 RETURN
(™
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10 REM
20 REM  +4+d++++tttttttrtrttttttttittbrttdtitts
30 REM + +
40 REM + BAYES PROBABILITY ANALYSIS +
S0 REM + (using the Poisson distribution) +
60 REM + By: L. Wayne Brasure +
70 REM + December 1984 +
80 REM + +
80 REM 4444444+ ++ttttttetrtrrtbitbsdbttttitibit
100 REM
110 DIM RPHI(3,18): DIM MPHI(18)s DIM NC(18): DIM FRACT(18)
111 0IM P(3): DIM H$(18)
115 PRINT "random number seed = "; RND ( - 7)
118 PRINT : PRINT : HOME
120 PRINT "BAYES PROBASILITY ANALYSIS"
130 PRINT "(the multinomial version w/noc background . . .)"
140 PRINT : PRINT
150 INPUT "Enter the total number of channels => ";NG
160 INPUT MEnter the distance from the source (cms) => ";RANGE
170 REM +++++ enter the reference source spectra at this range
180 GOSUB 1000
180 REM  +++++ enter the measured source spectrum @ this range
200 (OsuB 2000
210 REM  +++++ Calculate measured source spectrum
215 REM +++++ Uusing POISSON random number generator
220 GOSsuB 3000
230 REM  +++++ Calculate the Bayesian Posterior Distribution
240 GOSUB 4000
245 IF (DENOM = O) GOTO 360
250 REM  +++++ Print out the Posterior Distribution
260 NN =
265 PRINT
270 PRINT " SOURCE NUMBER PROB (SOURCE(i)$x)"
280 PRINT " "
290 PRINT
300 PRINT " A ",
310 XX = P1: GOSUB 6000: PRINT
320 PRINT " B "
330 XX = P2: GOSUB 6000: PRINT
360 PRINT " c ",
350 XX = P3: GOSUB 6000: PRINT
360 PRINT : INPUT " Another run perhaps? % 1=yes § => ";ANS
370 IF (ANS < > 1) GOTO 995
371 INPUT " . . . with the same setup?";ANS
372 IF (ANS = 1) GOTO 500
380 INPUT " . . . with just a new MEASURED source? => ";ANS
390 IF (ANS = 1) GOTC 180
400 PRINT " okay, from the beginning then . . ."
410 GOTO 140
500 FOR IG =1 TO NG
505 MPHI(IG) = FRACT(IG)
520 NEXT IG
530 GOTO 210
995 PRINT : PRINT "Very well then, good day sir."
999 END
128
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using the multinomial distribution. Refer to appendix F for

details on this subroutine.

Subroutine MULTINOMIAL.

This subroutine calculates the values of P(X|Ai)
the multinomial distribution, as discussed in chapter

List of Variables,

SWITCH - on/off determining variable for the
bubble sort,
T9 ~ a temporary storage variable for the
bubble sorting process,
JL, TI - incremental markers for the
multinomial calculations,
SUM -number of the totél fixed number of counts

available.
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